Skip to main content

Cognitive Methods for Semantic Image Analysis in Medical Imaging Applications

  • Chapter
  • First Online:
Natural User Interfaces in Medical Image Analysis

Part of the book series: Advances in Computer Vision and Pattern Recognition ((ACVPR))

  • 1103 Accesses

Abstract

In the first part of this chapter will be briefly presented the foundations of selected imaging techniques making use of computed tomography (CT). It will be focused on dynamic CT perfusion (CTP) and computed tomography angiography (CTA). Computed tomography perfusion makes it possible to visualize structural, dynamic, and functional irregularities caused by ischemia, unlike CT which only shows static images of a patient’s tissues. In neuroradiography, perfusion image analysis is currently used in cases of head injuries, epilepsy, vascular brain diseases, and especially to diagnose strokes and brain tumors. Later, it will discuss some fundamentals of cognitive computer image analysis aimed at computer-aided diagnosis and semantic image description. The idea behind the semantic analysis of images is based on the resonance processes. It defines the cognitive resonance model and the methods of its implementation using image languages. The possibilities of conducting a semantic analysis are illustrated with medical samples of diagnostic images showing brain perfusion maps and computer 3-D reconstructions of carotid vessels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. DICOM (2013) strategic document, version revised in 2013-10-23. http://medical.nema.org

  2. Digital Imaging and Communications in Medicine (DICOM, PS 3.5-2011) In: Part 5: data structures and encoding, National Electrical Manufacturers Association, 2011. http://medical.nema.org

  3. Kopp AF, Klingenbeck-Regn K, Heuschmid M, Küttner A, Ohnesorge B, Flohr T, Schaller S, Claussen CD (2000) Multislice computed tomography: basic principles and clinical applications. Electromedica 68(2):95–105

    Google Scholar 

  4. Celenk C, Celenk P (2012), Bone density measurement using computed tomography. In: Saba L (ed) Computed tomography—clinical applications. ISBN: 978-953-307-378-1, doi: 10.5772/22884 (InTech). http://www.intechopen.com/books/computed-tomography-clinical-applications/bone-density-measurement-using-computed-tomography

  5. Hachaj T, Ogiela MR (2012) Visualization of perfusion abnormalities with GPU-based volume rendering. Comput Graph-UK 36(3):163–169. doi:10.1016/j.cag.2012.01.002

    Article  Google Scholar 

  6. Hachaj T, Ogiela MR (2012). Framework for cognitive analysis of dynamic perfusion computed tomography with visualization of large volumetric data. J Electron Imaging 21(4): 043017, doi: 10.1117/1.JEI.21.4.043017

  7. Hachaj T (2014) Real time exploration and management of large medical volumetric datasets on small mobile devices—Evaluation of remote volume rendering approach. Int J Inf Manage 34:336–343. doi:10.1016/j.ijinfomgt.2013.11.005

    Article  Google Scholar 

  8. Hachaj T, Ogiela MR (2010). Augmented reality interface for visualization of volumetric medical data. Adv Intell Soft Comput 84:271–277, (Springer, Berlin Heidelberg)

    Google Scholar 

  9. Latchaw RE, Yonas H, Hunter GJ, Yuh WTC, Ueda T, Sorensen AG, Sunshine JL, Biller J, Wechsler L, Higashida R, Hademenos G (2003) Guidelines and recommendations for perfusion imaging in cerebral ischemia. Stroke 34:1084–1104

    Article  Google Scholar 

  10. Hoeffner EG, Case I, Jain R, Gujar SK, Shah GV, Deveikis JP, Carlos RC, Thompson BG, Harrigan MR, Mukherji SK (2004) Cerebral perfusion CT: technique and clinical applications. Radiology 231(3):632–644

    Article  Google Scholar 

  11. Wintermarka M, Thirana JP, Maedera P, Schnydera P, Meuli R (2001) Simultaneous measurement of regional cerebral blood flow by perfusion ct and stable xenon CT: a validation study. Am J Neuroradiol 22:905–914

    Google Scholar 

  12. Meier P, Zierler KL (1954) On the theory of the indicator-dilution method for measurement of blood flow and volume. J Appl Physiol 6(12):731–744

    Google Scholar 

  13. Roberts GW, Larson KB (1973) The interpretation of mean transit time measurements for multi-phase tissue systems. J Theor Biol 39(2):447–475

    Article  Google Scholar 

  14. Cenic A, Nabavi DG, Craen RA, Gelb AW, Lee TY (1999) Dynamic CT measurement of cerebral blood flow: a validation study. AJNR Am J Neuroradiol 20(1):63–73

    Google Scholar 

  15. Koh TS, Tan CKM, Cheong LHD, Limc CCT (2006) Cerebral perfusion mapping using a robust and efficient method for deconvolution analysis of dynamic contrast-enhanced images. NeuroImage 32(2):643–653

    Article  Google Scholar 

  16. Axel L (1980) Cerebral blood flow determination by rapid-sequence computed tomography: a theoretical analysis. Radiology 137(3):679–686

    Google Scholar 

  17. Wittsack HJ, Wohlschläger AM, Ritzl EK, Kleiser R, Cohnena M, Seitz RJ, Mödder U (2008) CT-perfusion imaging of the human brain: advanced deconvolution analysis using circulant singular value decomposition. Comput Med Imaging Graph 32(1):67–77

    Article  Google Scholar 

  18. Hirata M, Sugawara Y, Murase K, Miki H, Mochizuki T (2005) Evaluation of optimal scan duration and end time in cerebral CT perfusion study. Radiat Med 23(5):351–363

    Google Scholar 

  19. Sasaki M, Kudo K, Oikawa H (2006) CT perfusion for acute stroke: current concepts on technical aspects and clinical applications. Int Congr Ser 1290:30–36

    Article  Google Scholar 

  20. Koh TS, Hou Z (2002) A numerical method for estimating blood flow by dynamic functional imaging. Med Eng Phys 24(2):151–158

    Article  Google Scholar 

  21. Koenig M, Kraus M, Theek C, Klotz E, Gehlen W, Heuser L (2001) Quantitative assessment of the ischemic brain by means of perfusion-related parameters derived from perfusion CT. Stroke 32(2):431–437

    Article  Google Scholar 

  22. Eastwood JD, Lev MH, Wintermark M, Fitzek C, Barboriak DP, Delong DM, Lee TY, Azhari T, Herzau M, Chilukuri VR, Provenzale JM (2003) Correlation of early dynamic CT perfusion imaging with whole-brain MR diffusion and perfusion imaging in acute hemispheric stroke. AJNR Am J Neuroradiol 24(9):1869–1875

    Google Scholar 

  23. Lev MH, Segal AZ, Farkas J, Hossain ST, Putman C, Hunter GJ, Budzik R, Harris GJ, Buonanno FS, Ezzeddine MA, Chang Y, Koroshetz WJ, Gonzalez RG, Schwamm LH (2001) Utility of perfusion-weighted CT imaging in acute middle cerebral artery stroke treated with intra-arterial thrombolysis: prediction of final infarct volume and clinical outcome. Stroke 32(9):2021–2028

    Article  Google Scholar 

  24. Eastwood JD, Lev MH, Azhari T, Lee TY, Barboriak DP, Delong DM, Fitzek C, Herzau M, Wintermark M, Meuli R, Brazier D, Provenzale JM (2002) CT perfusion scanning with deconvolution analysis: pilot study in patients with acute middle cerebral artery stroke. Radiology 222(1):227–236

    Article  Google Scholar 

  25. Aksoy FG, Michael HL (2000) Dynamic contrast-enhanced brain perfusion imaging: technique and clinical applications. Semin Ultrasound CT MR 21(6):462–477

    Article  Google Scholar 

  26. Koenig M, Klotz E, Heuser L (1998) Perfusion CT in acute stroke: characterization of cerebral ischemia using parameter images of cerebral blood flow and their therapeutic relevance, Clinical experiences. Electromedica 66:61–67

    Google Scholar 

  27. Mayer TE, Hamann GF, Baranczyk J, Rosengarten B, Klotz E, Wiesmann M, Missler U, Schulte-Altedorneburg G, Brueckmann HJ (2000) Dynamic CT perfusion imaging of acute stroke. AJNR Am J Neuroradiol 21(8):1441–1449

    Google Scholar 

  28. Wintermark M, Reichhart M, Thiran JP, Maeder P, Chalaron M, Schnyder P, Bogousslavsky J, Meuli R (2002) Prognosis accuracy of cerebral blood flow measurement by perfusion computed tomography, at the time of emergency room admission, in acute stroke patients. Ann Neurol 51(4):417–432

    Article  Google Scholar 

  29. Klotz E, König M (1999) Perfusion measurements of the brain: using dynamic CT for the quantitative assessment of cerebral ischemia in acute stroke. Eur J Radiol 30(3):170–184

    Article  Google Scholar 

  30. Reichenbach JR, Röther J, Jonetz-Mentzel L, Herzau M, Fiala A, Weiller C, Kaiser WA (1999) Acute stroke evaluated by time-to-peak mapping during initial and early follow-up perfusion CT studies. AJNR Am J Neuroradiol 20(10):1842–1850

    Google Scholar 

  31. Guan X, Yu X, Liu X, Long J, Dai J (2003) CT perfusion imaging and CT subtraction angiography in the diagnosis of ischemic cerebrovascular disease within 24 hours. Chin Med J 116(3):368–372

    Google Scholar 

  32. Higashida RT, Furlan AJ, Roberts H, Tomsick T, Connors B, Barr J, Dillon W, Warach S, Broderick J, Tilley B, Sacks D (2003) Technology assessment committee of the american society of interventional and therapeutic neuroradiology; technology assessment committee of the society of interventional radiology, trial design and reporting standards for intra-arterial cerebral thrombolysis for acute ischemic stroke. Stroke 34(8):109–137

    Article  Google Scholar 

  33. Hachaj T (2012) Pattern Classification Methods for Analysis and Visualization of Brain Perfusion CT Maps. Comput Intell Paradig Adv Pattern Classif 386:145–170

    Article  Google Scholar 

  34. Hachaj T, Ogiela MR (2010) Automatic detection and lesion description in cerebral blood flow and cerebral blood volume perfusion maps. J Signal Process Syst Signal Image Video Technol 61(3):317–328. doi:10.1007/s11265-010-0454-0

    Article  Google Scholar 

  35. Hachaj T, Ogiela MR (2011) Intelligent information system for interpretation of dynamic perfusion brain maps. Lect Notes Artif Intell 6591:406–415

    Google Scholar 

  36. Hachaj T, Ogiela MR (2011) CAD system for automatic analysis of CT perfusion maps. Opto-Electron Rev 19(1):95–103. doi:10.2478/s11772-010-0071-2

    Article  Google Scholar 

  37. Hachaj T, Ogiela MR (2011) A system for detecting and describing pathological changes using dynamic perfusion computer tomography brain maps. Comput Biol Med 41(6):402–410. doi:10.1016/j.compbiomed.2011.04.002

    Article  Google Scholar 

  38. Hachaj T, Ogiela MR (2011) Augmented reality approaches in intelligent health technologies and brain lesion detection. Lect Notes Comput Sci 6908:135–148

    Article  Google Scholar 

  39. Hachaj T, Ogiela MR (2013) Application of neural networks in detection of abnormal brain perfusion regions. Neurocomputing 122:33–42. doi:10.1016/j.neucom.2013.04.030

    Article  Google Scholar 

  40. Kloska SP, Nabavi DG, Gaus C, Nam EM, Klotz E, Ringelstein EB, Heindel W (2004) Acute stroke assessment with CT: do we need multimodal evaluation? Radiology 233(1):79–86

    Article  Google Scholar 

  41. Yu T, Zhu X, Tang L, Wang D, Saad N (2007) Review of CT angiography of Aorta. Radiol Clin North Am 45(3):461–483

    Article  Google Scholar 

  42. American College of Radiology (ACR), American Society of Neuroradiology (ASNR)(2010) ACR-ASNR practice guideline for the performance and interpretation of cervicocerebral computed tomography angiography (CTA). [online publication]. Reston (VA), American College of Radiology (ACR), p 7

    Google Scholar 

  43. Hachaj T, Ogiela MR (2012) Segmentation and visualization of tubular structures in computed tomography angiography. Lect Notes Artif Intell 7198:495–503

    Google Scholar 

  44. Hachaj T, Ogiela MR (2012) Evaluation of carotid artery segmentation with centerline detection and active contours without edges algorithm. Lect Notes Comput Sci 7465:469–479

    Google Scholar 

  45. Ogiela MR, Hachaj T (2012). The automatic two-step vessel lumen segmentation algorithm for carotid bifurcation analysis during perfusion examination. In: Watada J, Watanabe T, PhillipsWren G (eds) Intelligent decision technologies (IDT’2012), vol 2. Smart innovation systems and technologies, vol 16, pp 485–493

    Google Scholar 

  46. Ogiela MR, Hachaj T (2013) Automatic segmentation of the carotid artery bifurcation region with a region-growing approach. J Electron Imaging 22(3): 033029, doi: 10.1117/1.JEI.22.3.033029

  47. Ogiela L (2008) Cognitive systems for medical pattern understanding and diagnosis. Lect Notes Artif Intell 5177:394–400

    Google Scholar 

  48. Ogiela L (2008) Syntactic approach to cognitive interpretation of medical patterns. Lect Notes Artif Intell 5314:456–462

    Google Scholar 

  49. Ogiela L (2009) UBIAS systems for the cognitive interpretation and analysis of medical images. Opto-Electron Rev 17(2):166–179

    Article  Google Scholar 

  50. Ogiela L (2010) Cognitive informatics in automatic pattern understanding and cognitive information systems. Stud Comput Intell 323: 209–226 (Springer, Berlin Heidelberg)

    Google Scholar 

  51. Ogiela L, Ogiela MR (2009). Cognitive techniques in visual data interpretation. Stud Comput Intell 228 (Springer, Berlin Heidelberg)

    Google Scholar 

  52. Ogiela L, Ogiela MR (2012) Advances in cognitive information systems. Cognit Syst Monogr 17 (Springer: Berlin Heidelberg)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek R. Ogiela .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ogiela, M.R., Hachaj, T. (2015). Cognitive Methods for Semantic Image Analysis in Medical Imaging Applications. In: Natural User Interfaces in Medical Image Analysis. Advances in Computer Vision and Pattern Recognition. Springer, Cham. https://doi.org/10.1007/978-3-319-07800-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07800-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07799-4

  • Online ISBN: 978-3-319-07800-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics