Factors Influencing the Quality of the User Experience in Ubiquitous Recommender Systems

  • Nikolaos Polatidis
  • Christos K. Georgiadis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8530)


The use of mobile devices and the rapid growth of the internet and networking infrastructure has brought the necessity of using Ubiquitous recommender systems. However in mobile devices there are different factors that need to be considered in order to get more useful recommendations and increase the quality of the user experience. This paper gives an overview of the factors related to the quality and proposes a new hybrid recommendation model.


Ubiquitous Computing Recommender Systems Quality Factors User Experience 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adomavicius, G., Mobasher, B., Francesco, R., Tuzhilin, A.: Context-aware recommender systems. AI Magazine 32(3), 67–80 (2011)Google Scholar
  2. 2.
    Bilandzic, M., Foth, M., Luca, A.D.: CityFlocks: Designing social navigation for urban mobile information systems. In: Proc. of the 7th ACM Conference on Designing Interactive Systems, pp. 174–183. ACM, Cape Town (2008)CrossRefGoogle Scholar
  3. 3.
    Burrell, J., Gay, G.K.: Collectively defining context in a mobile, networked computing environment. In: CHI 2001 Extended Abstracts on Human Factors in Computing Systems. ACM, Seattle (2001)Google Scholar
  4. 4.
    Buettcher, S., Clarke, C.L.A., Cormack, G.V.: Information retrieval: Implementing and evaluating search engines. MIT Press, Cambridge (2010)Google Scholar
  5. 5.
    Gavalas, D., Konstantopoulos, C., Mastakas, K., Pantziou, G.: Mobile recommender systems in tourism. Journal of Network and Computer Applications 39, 319–333 (2014)CrossRefGoogle Scholar
  6. 6.
    Ghorab, M.R., Zhou, D., Steichen, B., Wade, V.: Towards Multilingual User Models for Personalized Multilingual Information Retrieval. In: Proceedings of the 1st Workshop on Personalized Multilingual Hypertext Retrieval (PMHR 2011) in Conjunction with the 22nd ACM Conference on Hypertext and Hypermedia (HT 2011), Eindhoven, The Netherlands (2011)Google Scholar
  7. 7.
    Jannach, D., Zanker, M., Felfernig, A., Friedrich, G.: Recommender Systems an Introduction. Cambridge University Press (2011)Google Scholar
  8. 8.
    Kobsa, A.: Privacy-Enhanced Web Personalization. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 628–670. Springer, Heidelberg (2007)Google Scholar
  9. 9.
    Mettouris, C., Papadopoulos, G.A.: Ubiquitous Recommender Systems. Computing Online First Articles (2013)Google Scholar
  10. 10.
    Polatidis, N., Georgiadis, C.K.: Mobile recommender systems: An overview of technologies and challenges. In: 2013 Second International Conference on Informatics and Applications (ICIA), September 23-25, pp. 282–287 (2013)Google Scholar
  11. 11.
    Pu, P., Chen, L., Hu, R.: A user-centric evaluation framework for recommender systems. In: Proceedings of the Fifth ACM Conference on Recommender Systems (RecSys 2011), pp. 157–164. ACM, New York (2011)CrossRefGoogle Scholar
  12. 12.
    Reischach, F.V., Michahelles, F., Schmidt, A.: The design space of ubiquitous product recommendation systems. In: Proc. the 8th International Conference on Mobile and Ubiquitous Multimedia, pp. 1–10 (2009)Google Scholar
  13. 13.
    Ricci, F.: Mobile Recommender Systems. J. of IT & Tourism 12(3), 205–231 (2011)Google Scholar
  14. 14.
    Ricci, F., Rokach, L., Shapira, B., Kantor, P.B.: Recommender Systems Handbook. Springer (2011)Google Scholar
  15. 15.
    Takeuchi, Y., Sugimoto, M.: A user-adaptive city guide system with an unobtrusive navigation interface. Person. Ubiquitous Comput. 13(2), 119–132 (2007)CrossRefGoogle Scholar
  16. 16.
    Want, R., Pering, T.: System challenges for ubiquitous and pervasive computing. In: Proc. the 27th International Conference on Software Engineering, pp. 9–14. ACM (2005)Google Scholar
  17. 17.
    Ziegler, C.-N., McNee, S.M., Konstan, J.A., Lausen, G.: Improving recommendation lists through topic diversification. In: WWW 2005: Proceedings of the 14th International Conference on World Wide Web, pp. 22–32. ACM, New York (2005)CrossRefGoogle Scholar
  18. 18.
    The Apache Mahout Machine Learning Library mahout.apache.orgGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Nikolaos Polatidis
    • 1
  • Christos K. Georgiadis
    • 1
  1. 1.Department of Applied InformaticsUniversity of MacedoniaThessalonikiGreece

Personalised recommendations