Texture Image Classification Using Gabor and LBP Feature

Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 297)


This paper presents a feature fusion based texture image classification method simultaneously using Gabor and Local Binary Patterns (LBP) feature. LBP and Gabor wavelets are two widely used two successful local image representation methods. This paper proposes two kinds of feature fusion methods, which perform in feature level and matching score level, respectively. We show that combining the two successful local image representations, i.e. Gabor wavelets and LBP, gives considerably better performance than either alone. Experiment results on MIT texture database demonstrate the effectiveness of our method.


texture image classification gabor wavelets LBP 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    Varma, M., Zisserman, A.: A Statistical Approach to Texture Classification from Single Images. International Journal of Computer Vision 62 (1-2), 61–81Google Scholar
  3. 3.
    Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cognitive Neurosci. 3(1), 71–86 (1991)CrossRefGoogle Scholar
  4. 4.
    Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Trans. Pattern Anal. Machine Intell. 19(7)Google Scholar
  5. 5.
    Yang, J., Zhang, D., Frangi, A.F., Yang, J.Y.: Two dimensional PCA: A new approach to appearance-based face representation and recognition. IEEE Trans. Pattern Anal. Machine Intell. 26(1), 131–137 (2004)CrossRefGoogle Scholar
  6. 6.
    Yang, M., Zhang, L.: Gabor Feature based Sparse Representation for Face Recognition with Gabor Occlusion Dictionary. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316, pp. 448–461. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Lee, T.S.: Image representation using 2D Gabor Wavelets. IEEE Transactions on PAMI 18(10) (1996)Google Scholar
  8. 8.
    Ojala, T., Pietikainen, M., et al.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7), 971–987 (2002)CrossRefGoogle Scholar
  9. 9.
    Ojala, T., Pietikainen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distribution. Pattern Recognition 29(1), 51–59 (1996)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Yangtze UniversityHubeiChina

Personalised recommendations