Spatial and Frequency Domain–Based Feature Fusion Method for Texture Retrieval

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 297)

Abstract

This work presents a novel feature fusion method for texture retrieval. Considering the advantages of both the spatial and frequency domain, we first carry on the experiments in spatial domain and frequency domain respectively. On one hand, sober and histogram feature are used to calculate the similarity. On the other hand, Fourier is applied to obtain the frequency feature. Then a feature fusion scheme is used to join the two features came from spatial and frequency domain. Experimental results on MIT texture database show that the proposed method is effective.

Keywords

texture retrieval spatial domain frequency domain fusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Haralick, R.M., Shanmugam, K., Distein, I.: Textural features for image classification. IEEE Trans. on Systems, Man, and Cybernetics 3(6), 610–621 (1973)CrossRefGoogle Scholar
  2. 2.
    Soh, K.S., Tsatsoulis, C.: Texture analysis of SAR sea ice imagery using gray level co-ocuurrence matrices. IEEE Trans. on Geoscience and Remote Sensing 37(2), 780–795 (1999); Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face recognition: A literature survey. ACM Computing Survey 34(4), 399–485 (2003)Google Scholar
  3. 3.
    Ulaby, F.T., Kouyate, F., Brisco, B., et al.: Textural information in SAR images. IEEE Transactions on Geoscience and Remote Sensing 24(2), 235–245 (1986); Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn. Prentice-Hall, Upper Saddle River (2002)Google Scholar
  4. 4.
    Baraldi, A., Parmiggiani, F.: An investigation of the textual characteristics associated with gray level co-ocurrence matrix statistical parameters. IEEE Trans. on Geoscience and Remote Sensing 33(2), 293–304 (1995)CrossRefGoogle Scholar
  5. 5.
    Hua, B., Ma, F.-L., Jiao, L.-C.: Research on computation of GLCM of image texture. Acta Electronica Sinica 34(1), 155–158 (2006)Google Scholar
  6. 6.
    Clausi, D.A., Jernigan, M.E.: A fast method to determine co-occurrence texture features. IEEE Trans. on Geoscience and Remote Sensing 36(1), 298–300 (1998)CrossRefGoogle Scholar
  7. 7.
    Walker, R.F., Jackway, P.T., Longstaff, I.D.: Recent developments in the use of co-occurrence matrix for texture recognition. In: Proceedings of IEEE Conference on Digital Signal Processing, Santorini, Greece, vol. 1, pp. 63–65 (1997)Google Scholar
  8. 8.
    Kandaswamy, U., Adjeroh, D.A., Lee, M.C.: Efficient texture analysis of SAR imagery. IEEE Trans. on Geoscience and Remote Sensing 43(9), 2075–2083 (2005)CrossRefGoogle Scholar
  9. 9.
    German, S., German, D.: Stochastic relaxation, gibbs distribution and Bayesian restoration of images. IEEE Trans. on Pattern Analysis and Machine Intelligence 6(6), 721–741 (1984)CrossRefGoogle Scholar
  10. 10.
    McCormick, B.H., Jayaramamurthy, S.N.: Time series model for texture synthesis. International Journal of Computer Information Science 3(4), 329–343 (1974)CrossRefMATHGoogle Scholar
  11. 11.
    Ng, I., Tan, T., Kittler, J.: On local linear transform and Gabor filter representation of texture. In: Proceeding of the 11th IAPR Conference on Image, Speech and Signal Analysis, Hague, Netherlands, pp. 627–631 (1992)Google Scholar
  12. 12.
    Zhou, F., Feng, J., Shi, Q.: Image segmentation based on local fourier transform. In: Proceedings of International Conference on image Processing, Wuhan, China, pp. 610–613 (2001)Google Scholar
  13. 13.
    Dunn, D., Higgins, W.E., Wakeley, J.: Texture segmentation using 2-D Gabor elementary functions. IEEE Trans. on Pattern Analysis and Machine Intelligence 16(2), 130–149 (1994)CrossRefGoogle Scholar
  14. 14.
    Pavlidis, T.: Structural Descriptions and Graph Grammars, pp. 86–103. Springer, Berlin (1980)Google Scholar
  15. 15.
    Soille, P.: Morphological Image Analysis: Principles and Applications, pp. 289–317. Springer Press, Berlin (2003)Google Scholar
  16. 16.
    Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Transactions in Information Theory IT-13, 21–27 (1967)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.School of Computer ScienceYangtze UniversityWuhanChina

Personalised recommendations