A Graph Theory-Based Evaluation of Strategy Set in Robot Soccer

  • Jie Wu
  • Václav Snášel
  • Guangzhao Cui
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 297)


Strategy evaluation in robot soccer is a very important issue in the field of multi-robot coordinated control system. In our work, the implication of strategy and strategy set in robot soccer game are described firstly, it helps to explain the morphology of strategy set and make clear the four types of strategy subset. By transferring strategy set to a directed graph, we present a directed graph-based approach to evaluate the strategy set in robot soccer game. In this idea, better strategy set would achieve higher probability of goal score, then the probability of goal score is the benchmark of strategy set evaluation. According to the directed graph of strategy set, a group of linear equations can be constructed to compute the probability of goal score. In order to testify our method, two strategy sets are evaluated, and twenty simulation games are played to compare the performance of two strategy sets, the results of twenty games validate our approach.


graph theory strategy set robot soccer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bowling, M., Browning, B., Chang, A., Veloso, M.: Plays as team plans for coordination and adaptation. In: Polani, D., Browning, B., Bonarini, A., Yoshida, K. (eds.) RoboCup 2003. LNCS (LNAI), vol. 3020, pp. 686–693. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Bowling, M., Browning, B., Veloso, M.: Plays as effective multiagent plans enabling opponent-adaptive play selection. In: International Conference on Automated Planning and Scheduling, ICAPS 2004, Whistler, Canada, vol. 1, pp. 376–383. AAAI Press (June 2004)Google Scholar
  3. 3.
    Browning, B., Bruce, J., Bowling, M., Veloso, M.: Stp: skills, tactics, and plays for multi-robot control in adversarial environments. Journal of Systems and Control Engineering 219(1), 33–52 (2005)Google Scholar
  4. 4.
    Chapman, S., Derse, E., Hansen, J.: Soccer Coaching Manual. LA84 Foundation, Los Angeles (2007)Google Scholar
  5. 5.
    Dylla, F., Ferrein, A., Lakemeyer, G.: Acting and deliberating using golog in robotic soccer – a hybrid architecture. In: International Cognitive Robotics Workshop, CogRob 2002, Edmonton, Canada. AAAI Press (July 2002)Google Scholar
  6. 6.
    Dylla, F., Ferrein, A., Lakemeyer, G., Murray, J., Obst, O., Röfer, T., Schiffer, S., Stolzenburg, F., Visser, U., Wagner, T.: Approaching a formal soccer theory from behaviour specifications in robotic soccer, ch. 6. Computers in Sport, pp. 161–185. WIT Press, Southampton (2008)Google Scholar
  7. 7.
    Dylla, F., Ferrein, A., Lakemeyer, G., Murray, J., Obst, O., Röfer, T., Stolzenburg, F., Visser, U., Wagner, T.: Towards a league-independent qualitative soccer theory for robocup. In: Nardi, D., Riedmiller, M., Sammut, C., Santos-Victor, J. (eds.) RoboCup 2004. LNCS (LNAI), vol. 3276, pp. 611–618. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Floyd, M.W., Esfandiari, B., Lam, K.: A case-based reasoning approach to imitating robocup players. In: International Florida Artificial Intelligence Research Society Conference, FLAIRS 2008, Florida, USA, pp. 251–256. AAAI Press (May 2008)Google Scholar
  9. 9.
    Huang, Z., Yang, Y., Chen, X.: An approach to plan recognition and retrieval for multi-agent systems. In: First RoboCup Australian Open Workshop on Adaptability in Multi-Agent Systems. Citeseer (2003)Google Scholar
  10. 10.
    Jolly, K.G., Ravindran, K.P., Vijayakumar, R., Sreerama Kumar, R.: Intelligent decision making in multi-agent robot soccer system through compounded artificial neural networks. In: Robotics and Autonomous Systems, vol. 55(7), pp. 589–596 (2007)Google Scholar
  11. 11.
    Kleiner, A., Dietl, M., Nebel, B.: Towards a life-long learning soccer agent. In: Kaminka, G.A., Lima, P.U., Rojas, R. (eds.) RoboCup 2002. LNCS (LNAI), vol. 2752, pp. 126–134. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Lam, K., Esfandiari, B., Tudino, D.: A scene-based imitation framework for robocup clients. In: AAAI Workshop on Modeling Other Agents from Observations (2006)Google Scholar
  13. 13.
    Lattner, A.D., Miene, A., Visser, U., Herzog, O.: Sequential pattern mining for situation and behavior prediction in simulated robotic soccer. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y. (eds.) RoboCup 2005. LNCS (LNAI), vol. 4020, pp. 118–129. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Lee, J., Ji, D., Lee, W., Kang, G., Joo, M.: A tactics for robot soccer with fuzzy logic mediator. In: Hao, Y., Liu, J., Wang, Y.-P., Cheung, Y.-m., Yin, H., Jiao, L., Ma, J., Jiao, Y.-C. (eds.) CIS 2005. LNCS (LNAI), vol. 3801, pp. 127–132. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Lucchesi, M.: Coaching the 3-4-1-2 and 4-2-3-1. Reedswain (August 2002)Google Scholar
  16. 16.
    Miene, A., Visser, U., Herzog, O.: Recognition and prediction of motion situations based on a qualitative motion description. In: Polani, D., Browning, B., Bonarini, A., Yoshida, K. (eds.) RoboCup 2003. LNCS (LNAI), vol. 3020, pp. 77–88. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Nakashima, T., Takatani, M., Namikawa, N., Ishibuchi, H., Nii, M.: Robust evaluation of robocup soccer strategies by using match history. In: IEEE Congress on Evolutionary Computation, CEC 2006, Vancouver, BC, Canada, pp. 1195–1201. IEEE (July 2006)Google Scholar
  18. 18.
    Nakashima, T., Takatani, M., Udo, M., Ishibuchi, H.: An evolutionary approach for strategy learning in robocup soccer. In: IEEE International Conference on Systems, Man and Cybernetics, SMC 2004, Hague, Netherlands, vol. 2, pp. 2023–2028. IEEE (October 2004)Google Scholar
  19. 19.
    Nakashima, T., Takatani, M., Udo, M., Ishibuchi, H., Nii, M.: Performance evaluation of an evolutionary method for robocup soccer strategies. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y. (eds.) RoboCup 2005. LNCS (LNAI), vol. 4020, pp. 616–623. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Park, J.H., Stonier, D., Kim, J.H., Ahn, B.H., Jeon, M.G.: Recombinant rule selection in evolutionary algorithm for fuzzy path planner of robot soccer. In: Freksa, C., Kohlhase, M., Schill, K. (eds.) KI 2006. LNCS (LNAI), vol. 4314, pp. 317–330. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  21. 21.
    Riedmiller, M., Merke, A., Meier, D., Hoffmann, A., Sinner, A., Thate, O., Ehrmann, R.: Karlsruhe brainstormers - a reinforcement learning approach to robotic soccer. In: Stone, P., Balch, T., Kraetzschmar, G.K. (eds.) RoboCup 2000. LNCS (LNAI), vol. 2019, pp. 367–372. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  22. 22.
    Ros, R., Arcos, J.L.: Acquiring a robust case base for the robot soccer domain. In: International Joint Conference on Artificial Intelligence, IJCAI 2007, Hyderabad, India, pp. 1029–1034. AAAI Press (January 2007)Google Scholar
  23. 23.
    Ros, R., Arcos, J.L., Lopez de Mantaras, R., Veloso, M.: A case-based approach for coordinated action selection in robot soccer. Artificial Intelligence 173(9-10), 1014–1039 (2009)CrossRefGoogle Scholar
  24. 24.
    Ros, R., Veloso, M.: Executing multi-robot cases through a single coordinator. In: International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2007, Honolulu, Hawaii, pp. 1272–1274. ACM (May 2007)Google Scholar
  25. 25.
    Wu, C.J., Lee, T.L.: A fuzzy mechanism for action selection of soccer robots. Journal of Intelligent and Robotic Systems 39(1), 57–70 (2004)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Electrical EngineeringSchool of Electric and Information Engineering, Zhengzhou University of Light IndustryZhengzhouP.R. China
  2. 2.Department of Computer Science, Faculty of Electrical Engineering and Computer ScienceVŠB – Technical University of OstravaOstravaCzech Republic

Personalised recommendations