Image Categorization Using Macro and Micro Sense Visual Vocabulary

  • Chang-Ming Kuo
  • Chi-Kao Chang
  • Nai-Chung Yang
  • Chung-Ming Kuo
  • Yu-Ming Chen
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 297)

Abstract

Visual vocabulary representation approach has been successfully applied to many multimedia and vision applications, including visual recognition, image retrieval, and scene modeling/categorization. The idea behind the visual vocabulary representation is that an image can be represented by visual words, a collection of local features of images. In this work, we will develop a new scheme for the construction of visual vocabulary based on the analysis of visual word contents. By considering the content homogeneity of visual words, we design a visual vocabulary which contains macro-sense and micro-sense visual words. The two types of visual words are appropriately further combined to describe an image effectively. We also apply the visual vocabulary to construct image categorization system. The performance evaluation for the system indicates that the proposed visual vocabulary achieves promising results.

Keywords

Visual words Macro-sense Micro-sense Image categorization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhu, L., Rao, A., Zhang, A.: Theory of Keyblock-Based Image Retrieval. ACM Transaction on Information Systems, 224–257 (2002)Google Scholar
  2. 2.
    Yang, N.C., Chang, W.H., Kuo, C.M., Li, T.H.: A fast MPEG-7 dominant color extraction with new similarity measure for image retrieval. Journal of Visual Communication and Image Representation 19, 92–105 (2008)CrossRefGoogle Scholar
  3. 3.
    Jiang, Y.G., Yang, J., Ngo, C.W., Hauptmann, A.G.: Representations of Keypoint-Based Semantic Concept Detection: A Comprehensive Study. IEEE Transactions on Multimedia 12(1), 42–53 (2010)CrossRefGoogle Scholar
  4. 4.
    Li, T., Mei, T., Kweon, I.S., Hua, X.S.: Contextual Bag-of-Words for Visual Categorization. IEEE Transactions on Circuits And Systems For Video Technology 21(4), 381–392 (2011)CrossRefGoogle Scholar
  5. 5.
    Zhang, S., Tian, Q., Hua, G., Huang, Q., Gao, W.: Generating Descriptive Visual Words and Visual Phrases for Large-Scale Image Applications. IEEE Transactions on Image Processing 20(9), 3664–3677 (2011)MathSciNetGoogle Scholar
  6. 6.
    Kesorn, K., Poslad, S.: An Enhanced Bag-of-Visual Word Vector Space Model to Represent Visual Content in Athletics Images. IEEE Transactions on Multimedia 14(1), 211–222 (2012)CrossRefGoogle Scholar
  7. 7.
    Perronnin, F.: Universal and Adapted Vocabularies for Generic Visual Categorization. IEEE Transactions on Pattern Analysis And Machine Intelligence 30(7), 1243–1256 (2008)CrossRefGoogle Scholar
  8. 8.
    Qin, J., Yung, N.C.: Scene categorization via contextual visual words. Pattern Recognition 43, 1874–1888 (2010)CrossRefMATHGoogle Scholar
  9. 9.
    López-Sastre, R.J., Tuytelaars, T., RodrÍguez, F.J.A., Bascón, S.M.: Towards a more discriminative and semantic visual vocabulary. Computer Vision And Image Understanding 115, 415–425 (2011)CrossRefGoogle Scholar
  10. 10.
    Bolovinou, A., Pratikakis, I., Perantonis, S.: Bag of spatio-visual words for context inference in scene classification. Pattern Recognition 46, 1039–1053 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Chang-Ming Kuo
    • 1
  • Chi-Kao Chang
    • 1
  • Nai-Chung Yang
    • 1
  • Chung-Ming Kuo
    • 1
  • Yu-Ming Chen
    • 1
  1. 1.Department of Information EngineeringI-Shou University DashuKaohsiungTaiwan

Personalised recommendations