Compact Bat Algorithm

  • Thi-Kien Dao
  • Jeng-Shyang Pan
  • Trong-The Nguyen
  • Shu-Chuan Chu
  • Chin-Shiuh Shieh
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 298)

Abstract

Addressing to the computational requirements of the hardware devices with limited resources such as memory size or low price is critical issues. This paper, a novel algorithm, namely compact Bat Algorithm (cBA), for solving the numerical optimization problems is proposed based on the framework of the original Bat algorithm (oBA). A probabilistic representation random of the Bat’s behavior is inspired to employ for this proposed algorithm, in which the replaced population with the probability vector updated based on single competition. These lead to the entire algorithm functioning applying a modest memory usage. The simulations compare both algorithms in terms of solution quality, speed and saving memory. The results show that cBA can solve the optimization despite a modest memory usage as good performance as oBA displays with its complex population-based algorithm. It is used the same as what is needed for storing space with six solutions.

Keywords

Bat algorithm compact Bat algorithm Optimizations Swarm intelligence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Srinivas, M., Patnaik, L.M.: Genetic algorithms: a survey. Computer 27(6), 17–26 (1994)CrossRefGoogle Scholar
  2. 2.
    Wang, S., Yang, B., Niu, X.: A Secure Steganography Method based on Genetic Algorithm. Journal of Information Hiding and Multimedia Signal Processing 1(1), 8 (2010)Google Scholar
  3. 3.
    Ruiz-Torrubiano, R., Suarez, A.: Hybrid Approaches and Dimensionality Reduction for Portfolio Selection with Cardinality Constraints. IEEE Computational Intelligence Magazine 5(2), 92–107 (2010)CrossRefGoogle Scholar
  4. 4.
    Jui-Fang, C., Shu-Wei, H.: The Construction of Stock’s Portfolios by Using Particle Swarm Optimization, pp. 390–390Google Scholar
  5. 5.
    Bajaj, P., Puranik, P., Abraham, A., Palsodkar, P., Deshmukh, A.: Human Perception-based Color Image Segmentation Using Comprehensive Learning Particle Swarm Optimization. Journal of Information Hiding and Multimedia Signal Processing 2(3), 227–235 (2011)CrossRefGoogle Scholar
  6. 6.
    Pinto, P.C., Nagele, A., Dejori, M., Runkler, T.A., Sousa, J.M.C.: Using a Local Discovery Ant Algorithm for Bayesian Network Structure Learning. IEEE Transactions on Evolutionary Computation 13(4), 767–779 (2009)CrossRefGoogle Scholar
  7. 7.
    Chouinard, J.-Y., Loukhaoukha, K., Taieb, M.H.: Optimal Image Watermarking Algorithm Based on LWT-SVD via Multi-objective Ant Colony Optimization. Journal of Information Hiding and Multimedia Signal Processing 2(4), 303–319 (2011)Google Scholar
  8. 8.
    Pan, Q.-K., Tasgetiren, M.F., Suganthan, P.N., Chua, T.J.: A discrete artificial bee colony algorithm for the lot-streaming flow shop scheduling problem. Inf. Sci. 181(12), 2455–2468 (2011)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Chu, S.-C., Tsai, P.W.: Computational Intelligence Based on the Behavior of Cats. International Journal of Innovative Computing, Information and Control 3(1), 8 (2006)Google Scholar
  10. 10.
    Wang, Z.-H., Chang, C.-C., Li, M.-C.: Optimizing least-significant-bit substitution using cat swarm optimization strategy. Inf. Sci. 192, 98–108 (2012)CrossRefGoogle Scholar
  11. 11.
    Akyildiz, I.F., Weilian, S., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor networks. IEEE Communications Magazine 40(8), 102–114 (2002)CrossRefGoogle Scholar
  12. 12.
    Gene, C., Wai-tian, T., Yoshimura, T.: Real-time video transport optimization using streaming agent over 3G wireless networks. IEEE Transactions on Multimedia 7(4), 777–785 (2005)CrossRefGoogle Scholar
  13. 13.
    Pourmousavi, S.A., Nehrir, M.H., Colson, C.M., Caisheng, W.: Real-Time Energy Management of a Stand-Alone Hybrid Wind-Microturbine Energy System Using Particle Swarm Optimization. IEEE Transactions on Sustainable Energy 1(3), 193–201 (2010)CrossRefGoogle Scholar
  14. 14.
    Norman, P.G.: The new AP101S general-purpose computer (GPC) for the space shuttle. Proceedings of the IEEE 75(3), 308–319 (1987)CrossRefGoogle Scholar
  15. 15.
    Simpson, J.A., Hughes, B.L., Muth, J.F.: Smart Transmitters and Receivers for Underwater Free-Space Optical Communication. IEEE Journal on Selected Areas in Communications 30(5), 964–974 (2012)CrossRefGoogle Scholar
  16. 16.
    Harik, G.R., Lobo, F.G., Goldberg, D.E.: The compact genetic algorithm. IEEE Transactions on Evolutionary Computation 3(4), 287–297 (1999)CrossRefGoogle Scholar
  17. 17.
    Mininno, E., Neri, F., Cupertino, F., Naso, D.: Compact Differential Evolution. IEEE Transactions on Evolutionary Computation 15(1), 32–54 (2011)CrossRefGoogle Scholar
  18. 18.
    Neri, F., Mininno, E., Iacca, G.: Compact Particle Swarm Optimization. Information Sciences 239, 96–121 (2013)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Yang, X.-S.: A New Metaheuristic Bat-Inspired Algorithm. In: González, J.R., Pelta, D.A., Cruz, C., Terrazas, G., Krasnogor, N. (eds.) NICSO 2010. SCI, vol. 284, pp. 65–74. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. 20.
    Tsai, P.W., Pan, J.S., Liao, B.Y., Tsai, M.J., Istanda, V.: Bat Algorithm Inspired Algorithm for Solving Numerical Optimization Problems. Applied Mechanics and Materials 148-149, 134–137 (2012)CrossRefGoogle Scholar
  21. 21.
    Pearson, K.: The Problem of the Random Walk. Nature, 72 (1905)Google Scholar
  22. 22.
    Pemantle, R.: A survey of random processes with reinforcement. Probability Surveys 4(2007), 9 (2007)MathSciNetGoogle Scholar
  23. 23.
    Billingsley, P.: Probability and Measure. John Wiley and Sons (1979)Google Scholar
  24. 24.
    Cody, W.J.: Rational Chebyshev approximations for the error function. Mathematics of Computation 23(107), 631–637 (1969)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Mininno, E., Cupertino, F., Naso, D.: Real-Valued Compact Genetic Algorithms for Embedded Microcontroller Optimization. IEEE Transactions on Evolutionary Computation 12(2), 203–219 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Thi-Kien Dao
    • 1
  • Jeng-Shyang Pan
    • 1
  • Trong-The Nguyen
    • 1
  • Shu-Chuan Chu
    • 2
  • Chin-Shiuh Shieh
    • 1
  1. 1.Department of Electronics EngineeringNational Kaohsiung University of Applied SciencesKaohsiungTaiwan
  2. 2.School of Computer Science, Engineering and MathematicsFlinders UniversityAdelaideAustralia

Personalised recommendations