Advertisement

Hybrid Bat Algorithm with Artificial Bee Colony

  • Trong-The Nguyen
  • Jeng-Shyang Pan
  • Thi-Kien Dao
  • Mu-Yi Kuo
  • Mong-Fong Horng
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 298)

Abstract

In this paper, a hybrid between Bat algorithm (BA) and Artificial Bee Colony (ABC) with a communication strategy is proposed for solving numerical optimization problems. The several worst individual of Bats in BA will be replaced with the better artificial agents in ABC algorithm after running every Ri iterations, and on the contrary, the poorer agents of ABC will be replacing with the better individual of BA. The proposed communication strategy provides the information flow for the bats to communicate in Bat algorithm with the agents in ABC algorithm. Four benchmark functions are used to test the behavior of convergence, the accuracy, and the speed of the proposed method. The results show that the proposed increases the convergence and accuracy more than original BA is up to 78% and original ABC is at 11% on finding the near best solution improvement.

Keywords

Hybrid Bat Algorithm with Artificial Bee Colony Bat Algorithm Artificial Bee Colony Algorithm Optimizations Swarm Intelligence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Srinivas, M., Patnaik, L.M.: Genetic Algorithms: A Survey. Computer 27, 17–26 (1994)CrossRefGoogle Scholar
  2. 2.
    Wang, S., Yang, B., Niu, X.: A Secure Steganography Method based on Genetic Algorithm. Journal of Information Hiding and Multimedia Signal Processing 1, 8 (2010)Google Scholar
  3. 3.
    Ruiz-Torrubiano, R., Suarez, A.: Hybrid Approaches and Dimensionality Reduction for Portfolio Selection with Cardinality Constraints. IEEE Computational Intelligence Magazine 5(2), 92–107 (2010)CrossRefGoogle Scholar
  4. 4.
    Chen, S.-M., Chien, C.-Y.: Solving the traveling salesman problem based on the genetic simulated annealing ant colony system with particle swarm optimization techniques. Expert Systems with Applications 38(12), 14439–14450 (2011)CrossRefGoogle Scholar
  5. 5.
    Hsu, C.-H., Shyr, W.-J., Kuo, K.-H.: Optimizing Multiple Interference Cancellations of Linear Phase Array Based on Particle Swarm Optimization. Journal of Information Hiding and Multimedia Signal Processing (4), 292–300 (2010)Google Scholar
  6. 6.
    Chen, S.-M., Kao, P.-Y.: TAIEX forecasting based on fuzzy time series, particle swarm optimization techniques and support vector machines. Information Sciences 247, 62–71 (2013)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Jui-Fang, C., Shu-Wei, H.: The Construction of Stock’s Portfolios by Using Particle Swarm Optimization, p. 390 (2007)Google Scholar
  8. 8.
    Parag Puranik, P.B., Abraham, A., Palsodkar, P., Deshmukh, A.: Human Perception-based Color Image Segmentation Using Comprehensive Learning Particle Swarm Optimization. Journal of Information Hiding and Multimedia Signal Processing 2(3), 227–235 (2011)CrossRefGoogle Scholar
  9. 9.
    Pinto, P.C., Nagele, A., Dejori, M., Runkler, T.A., Sousa, J.M.C.: Using a Local Discovery Ant Algorithm for Bayesian Network Structure Learning. IEEE Transactions on Evolutionary Computation 13(4), 767–779 (2009)CrossRefGoogle Scholar
  10. 10.
    Khaled Loukhaoukha, J.-Y.C., Taieb, M.H.: Optimal Image Watermarking Algorithm Based on LWT-SVD via Multi-objective Ant Colony Optimization. Journal of Information Hiding and Multimedia Signal Processing 2(4), 303–319 (2011)Google Scholar
  11. 11.
    Pan, Q.-K., Tasgetiren, M.F., Suganthan, P.N., Chua, T.J.: A discrete artificial bee colony algorithm for the lot-streaming flow shop scheduling problem. Inf. Sci. 181(12), 2455–2468 (2011)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Chu, S.-C., Tsai, P.-W.: Computational Intelligence Based on the Behavior of Cats. International Journal of Innovative Computing, Information and Control 3(1), 8 (2006)Google Scholar
  13. 13.
    Wang, Z.-H., Chang, C.-C., Li, M.-C.: Optimizing least-significant-bit substitution using cat swarm optimization strategy. Inf. Sci. 192, 98–108 (2012)CrossRefGoogle Scholar
  14. 14.
    Chu, S.-C., Roddick, J.F., Pan, J.-S.: Ant colony system with communication strategies. Information Sciences 167(1-4), 63–76 (2004)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Chang, J.F., Chu, S.C., Roddick, J.F., Pan, J.S.: A parallel particle swarm optimization algorithm with communication strategies. Journal of Information Science and Engineering 21(4), 9 (2005)Google Scholar
  16. 16.
    Pei-Wei, T., Jeng-Shyang, P., Shyi-Ming, C., Bin-Yih, L., Szu-Ping, H.: Parallel Cat Swarm Optimization, pp. 3328–3333 (2008)Google Scholar
  17. 17.
    Whitley, D., Rana, S., Heckendorn, R.B.: The Island Model Genetic Algorithm: On Separability, Population Size and Convergence. Journal of Computing and Information Technology 1305/1997, 6 (1998)Google Scholar
  18. 18.
    Abramson, D., Abela, J.: A Parallel Genetic Algorithm for Solving the School Timetabling Problem. Division of Information Technology, pp. 1–11 (1991)Google Scholar
  19. 19.
    Yang, X.-S.: A New Metaheuristic Bat-Inspired Algorithm. In: González, J.R., Pelta, D.A., Cruz, C., Terrazas, G., Krasnogor, N. (eds.) NICSO 2010. SCI, vol. 284, pp. 65–74. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. 20.
    Karaboga, D.: An Idea based on Honey Bee Swarm for Numerical Optimization. Technical Report-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department (2005)Google Scholar
  21. 21.
    Karaboga, D., Basturk, B.: On the Performance of Artificial Bee Colony (ABC) Algorithm. Applied Soft Computing 1, 687–697 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Trong-The Nguyen
    • 1
  • Jeng-Shyang Pan
    • 2
  • Thi-Kien Dao
    • 2
  • Mu-Yi Kuo
    • 2
  • Mong-Fong Horng
    • 2
  1. 1.Department of Information TechnologyHaiphong Private UniversityHaiphongVietnam
  2. 2.Department of Electronics EngineeringNational Kaohsiung University of Applied SciencesKaohsiungTaiwan

Personalised recommendations