Advertisement

Discriminative Image Representation for Classification

Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 298)

Abstract

The Bag-of-visual Words (BoW) image representation is a classical method applied for various problems in the fields of multimedia and computer vision. During the process of BoW image representation, one of the core problems is to generate discriminative and descriptive visual words. In this paper, in order to represent the image completely, we propose a visual word filtering algorithm, which filters the lower discriminative and descriptive visual words. Based on the traditional method of generating visual words, the filtering algorithm includes two steps: 1) calculate the probability distribution of the various visual words, and then, delete the words with gentle probability distribution; 2) delete the visual words with less instances. In this way, the generated visual features become more discriminative and descriptive, furthermore, multiple cues fusion, such as shape, color, texture, is also taken into account, we compare our approach with traditional Bag-of-visual Words method applied for image classification on three benchmark datasets, and the performances of the classification all get improvements to some extent.

Keywords

Image Representation Discriminative Descriptive Multiple cues fusion Visual word filtering algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bosch, A., Zisserman, A., Muñoz, X.: Scene classification via pLSA. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 517–530. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Chang, S.-F., Ellis, D., Jiang, W., Lee, K., Yanagawa, A., Loui, A.C., Luo, J.: Large-scale multimodal semantic concept detection for consumer video. In: Proceedings of the International Workshop on Multimedia Information Retrieval, pp. 255–264. ACM (2007)Google Scholar
  3. 3.
    Chatfield, K., Lempitsky, V., Vedaldi, A., Zisserman, A.: The devil is in the details: an evaluation of recent feature encoding methods (2011)Google Scholar
  4. 4.
    Chen, J., Kellokumpu, V., Zhao, G., Pietikäinen, M.: Rlbp: Robust local binary pattern. In: BMVC (2013)Google Scholar
  5. 5.
    Datta, R., Joshi, D., Li, J., Wang, J.Z.: Image retrieval: Ideas, influences, and trends of the new age. ACM Computing Surveys (CSUR) 40(2), 5 (2008)CrossRefGoogle Scholar
  6. 6.
    Fei-Fei, L., Perona, P.: A bayesian hierarchical model for learning natural scene categories. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 2, pp. 524–531. IEEE (2005)Google Scholar
  7. 7.
    Fernando, B., Fromont, E., Muselet, D., Sebban, M.: Discriminative feature fusion for image classification. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3434–3441. IEEE (2012)Google Scholar
  8. 8.
    Jegou, H., Harzallah, H., Schmid, C.: A contextual dissimilarity measure for accurate and efficient image search. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2007, pp. 1–8. IEEE (2007)Google Scholar
  9. 9.
    Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 2169–2178. IEEE (2006)Google Scholar
  10. 10.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  11. 11.
    Marszaek, M., Schmid, C.: Spatial weighting for bag-of-features. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 2118–2125. IEEE (2006)Google Scholar
  12. 12.
    Nister, D., Stewenius, H.: Scalable recognition with a vocabulary tree. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 2161–2168. IEEE (2006)Google Scholar
  13. 13.
    Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7), 971–987 (2002)CrossRefGoogle Scholar
  14. 14.
    Sivic, J., Zisserman, A.: Video google: A text retrieval approach to object matching in videos. In: Proceedings of the Ninth IEEE International Conference on Computer Vision, pp. 1470–1477. IEEE (2003)Google Scholar
  15. 15.
    Smeaton, A.F., Over, P., Kraaij, W.: Evaluation campaigns and trecvid. In: Proceedings of the 8th ACM International Workshop on Multimedia Information Retrieval, pp. 321–330. ACM (2006)Google Scholar
  16. 16.
    Van De Sande, K.E., Gevers, T., Snoek, C.G.: Evaluating color descriptors for object and scene recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(9), 1582–1596 (2010)CrossRefGoogle Scholar
  17. 17.
    Van De Weijer, J., Gevers, T., Bagdanov, A.D.: Boosting color saliency in image feature detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(1), 150–156 (2006)CrossRefGoogle Scholar
  18. 18.
    Winn, J., Criminisi, A., Minka, T.: Object categorization by learned universal visual dictionary. In: Tenth IEEE International Conference on Computer Vision, ICCV 2005, vol. 2, pp. 1800–1807. IEEE (2005)Google Scholar
  19. 19.
    Wu, Z., Ke, Q., Isard, M., Sun, J.: Bundling features for large scale partial-duplicate web image search. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 25–32. IEEE (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Zhize Wu
    • 1
  • Shouhong Wan
    • 1
  • Lihua Yue
    • 1
  • Ruoxin Sang
    • 1
  1. 1.School of Computer Science and Technology, Key Laboratory of Electromagnetic Space InformationChinese Academy of Sciences, University of Science and Technology of ChinaHefeiChina

Personalised recommendations