Advertisement

An Efficient Image Encryption Scheme Based on ZUC Stream Cipher and Chaotic Logistic Map

  • Hai Cheng
  • Chunguang Huang
  • Qun Ding
  • Shu-Chuan Chu
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 298)

Abstract

Digital color image encryption is different from text encryption because of some inherent features of image such as huge data capacity and high correlation among the neighboring pixels. Because of the desirable cryptographic properties of the chaotic maps such as sensitivity to initial conditions and random-like behave, more and more researches use these properties for encryption. This paper proposed an efficient image encryption scheme. Logistic chaos-based stream cipher is utilized to permute the color image. The MD5 hash function and the ZUC stream cipher algorithm are combined to diffusion the color image. Theoretical and experimental analyses both confirm the security and the validity of the proposed algorithm.

Keywords

ZUC stream cipher logistic chaotic map color image encryption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahmed, H.E.H., Kalash, H.M., Allah, O.S.F.: Encryption quality analysis of the RC5 block cipher algorithm for digital images. Opt. Eng. 45, 107003-107003-7 (2006)Google Scholar
  2. 2.
    Barakat, M.L., Mansingka, A.S., Radwan, A.G., et al.: Hardware stream cipher with controllable chaos generator for colour image encryption. IET Image Proc. 8, 33–43 (2014)CrossRefGoogle Scholar
  3. 3.
    Behnia, S., Akhshani, A., Mahmodi, H., et al.: A novel algorithm for image encryption based on mixture of chaotic maps. Chaos, Soliton. Fract. 35, 408–419 (2008)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Gao, T., Chen, Z.: Image encryption based on a new total shuffling algorithm. Chaos, Soliton. Fract. 38, 213–220 (2008)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Kwok, H.S., Tang, W.K.S.: A fast image encryption system based on chaotic maps with finite precision representation. Chaos, Soliton. Fract. 32, 1518–1529 (2007)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Matthews, R.: On the derivation of a chaotic encryption algorithm. Cryptologia 13, 29–42 (1989)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Mazloom, S., Eftekhari-Moghadam, A.M.: Color image encryption based on Coupled Nonlinear Chaotic Map. Chaos, Soliton. Fract. 42, 1745–1754 (2009)CrossRefMATHGoogle Scholar
  8. 8.
    Pareek, N.K., Patidar, V., Sud, K.K.: Image encryption using chaotic logistic map. Image and Vision Comput. 24, 926–934 (2006)CrossRefGoogle Scholar
  9. 9.
    Kitsos, P., Sklavos, N., Provelengios, G., et al.: FPGA-based performance analysis of stream ciphers ZUC, Snow3g, Grain V1, Mickey V2, Trivium and E0. Microprocess. Microsy. 37, 235–245 (2013)CrossRefGoogle Scholar
  10. 10.
    Zhu, H., Zhao, C., Zhang, X.: A novel image encryption compression scheme using hyper-chaos and Chinese remainder theorem. Signal Processing-Image 28, 670–680 (2013)CrossRefMATHGoogle Scholar
  11. 11.
    Liu, H., Wang, X.: Color image encryption based on one-time keys and robust chaotic maps. Compu. Math. Appl. 59, 320–332 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Hai Cheng
    • 1
  • Chunguang Huang
    • 1
  • Qun Ding
    • 1
  • Shu-Chuan Chu
    • 2
  1. 1.Key Laboratory of Electronics EngineeringHeilongjiang UniversityHarbinChina
  2. 2.School of Computer Science, Engineering and MathematicsFlinders UniversityAdelaideAustralia

Personalised recommendations