Computational Intelligence Approaches for Digital Media Analysis and Description

  • Alexandros Iosifidis
  • Anastasios Tefas
  • Ioannis Pitas
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 298)

Abstract

This paper provides an overview of recent research efforts for digital media analysis and description. It focuses on the specific problem of human centered video analysis for activity and identity recognition in unconstrained environments. For this problem, some of the state-of-the-art approaches for video representation and classification are described. The presented approaches are generic and can be easily adapted for the description and analysis of other semantic concepts, especially those that involve human presence in digital media content.

Keywords

Digital Media Analysis Digital Media Description Human Action Recognition Video Representation Video Classification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ji, X., Liu, H.: Advances in view-invariant human motion analysis: a review. IEEE Transactions on Systems Man and Cybernetics, Part-C 40(1), 13–24 (2010)Google Scholar
  2. 2.
    Iosifidis, A., Tefas, A., Nikolaidis, N., Pitas, A.: Multi-view Human Movement Recognition based on Fuzzy Distances and Linear Discriminant Analysis. Computer Vision and Image Understanding 116, 347–360 (2012)CrossRefGoogle Scholar
  3. 3.
    Iosifidis, A., Tefas, A., Pitas, A.: View-invariant action recognition based on Artificial Neural Networks. IEEE Transactions on Neural Networks 23(3), 412–424 (2012)CrossRefGoogle Scholar
  4. 4.
    Wang, H., Ullah, M., Klaser, A., Laptev, I.: Evaluation of local spatio-temporal features for action recognition. In: British Machine Vision Conference (2009)Google Scholar
  5. 5.
    Wang, H., Klaser, A., Schmid, C., Laptev, I.: Dense trajectories and motion boundary descriptors for action recognition. International Journal of Computer Vision 103(1), 60–79 (2013)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Guha, T., Ward, R.: Learning Sparse Representations for Human Action Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 34, 1576–1588 (2011)CrossRefGoogle Scholar
  7. 7.
    Laptev, I.: On space-time interest points. International Journal of Computer Vision 64(2), 107–123 (2005)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Le, Q.V., Zou, W.Y., Yeung, S.Y., Ng, A.Y.: Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis. In: Computer Vision and Pattern Recognition (2011)Google Scholar
  9. 9.
    Laptev, I., MarszalSchmid, C., Rozenfeld, B.: Learning realistic human actions from movies. In: Computer Vision and Pattern Recognition (2008)Google Scholar
  10. 10.
    Oshin, O., Gilbert, A., Bowden, R.: Capturing the relative distribution of features for action recognition. In: Face and Gesture Workshop (2011)Google Scholar
  11. 11.
    Theodoridis, S., Koutroumbas, K.: Pattern Recognition. Academic Press (2008)Google Scholar
  12. 12.
    Zhang, J., Marszalek, M., Lazebnik, M., Schmid, C.: Local features and kernels for classification of texture and object categories: A comprehensive study. International Journal of Computer Vision 73(2), 213–238 (2007)CrossRefGoogle Scholar
  13. 13.
    Iosifidis, A., Tefas, A., Pitas, I.: Person Identification from Actions based on Artificial Neural Networks. In: Symposium Series on Computational Intelligence (2013)Google Scholar
  14. 14.
    Minhas, R., Baradarani, S., Seifzadeh, S., Wu, Q.J.: Human action recognition using extreme learning machine based on visual vocabularies. Neurocomputing 73(10-12), 1906–1917 (2010)CrossRefGoogle Scholar
  15. 15.
    Iosifidis, A., Tefas, A., Pitas, I.: Multi-view Human Action Recognition under Occlusion based on Fuzzy Distances and Neural Networks. In: European Signal Processing Conference (2012)Google Scholar
  16. 16.
    Iosifidis, A., Tefas, A., Pitas, I.: Minimum Class Variance Extreme Learning Machine for Human Action Recognition. IEEE Transactions on Circuits and Systems for Video Technology 23(11), 1968–1979 (2013)CrossRefGoogle Scholar
  17. 17.
    Iosifidis, A., Tefas, A., Pitas, I.: Minimum Variance Extreme Learning Machine for Human Action Recognition. In: International Conference on Accoustics, Speech and Signal Processing (2014)Google Scholar
  18. 18.
    Iosifidis, A., Tefas, A., Pitas, I.: Multi-view Regularized Extreme Learning Machine for Human Action Recognition. In: Hellenic Conference on Artificial Intelligence (2014)Google Scholar
  19. 19.
    Iosifidis, A., Tefas, A., Pitas, I.: Dynamic action recognition based on Dynemes and Extreme Learning Machine. Pattern Recognition Letters 34, 1890–1898 (2013)CrossRefGoogle Scholar
  20. 20.
    Belkin, M., Niyogi, P., Sindhawani, V.: Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples. Journal of Machine Learning Research 7, 2399–2434 (2006)MATHGoogle Scholar
  21. 21.
    Iosifidis, A., Tefas, A., Pitas, I.: Dynamic Action Classification based on Iterative Data Selection and Feedforward Neural Networks. In: European Signal Processing Conference (2013)Google Scholar
  22. 22.
    Iosifidis, A., Tefas, A., Pitas, I.: Active Classification for Human Action Recognition. In: IEEE International Conference on Image Processing (2013)Google Scholar
  23. 23.
    Liu, J., Cheng, Y., Liu, M., Zhao, Z.: Semi-supervised ELM with application in sparse calibrated locations estimation. Neurocomputing 74, 2566–2572 (2011)CrossRefGoogle Scholar
  24. 24.
    Scholkpf, B., Smola, A.: Learning with kernels. MIT Press (2001)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Alexandros Iosifidis
    • 1
  • Anastasios Tefas
    • 1
  • Ioannis Pitas
    • 1
  1. 1.Department of InformaticsAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations