Skip to main content

Interleaving and Sparse Random Coded Aperture for Lens-Free Visible Imaging

  • Conference paper
Intelligent Data analysis and its Applications, Volume II

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 298))

  • 1900 Accesses

Abstract

Coded aperture has been applied to short wavelength imaging (e.g., gamma-ray), and it suffers from diffraction and interference for taking longer wavelength images. This paper investigates an interleaving and sparse random (ISR) coded aperture to reduce the impact of diffraction and interference for visible imaging. The interleaving technique treats coded aperture as a combination of many small replicas to reduce the diffraction effects and to increase the angular resolution. The sparse random coded aperture reduces the interference effects by increasing the separations between adjacent open elements. These techniques facilitate the analysis of the imaging model based only on geometric optics. Compressed sensing is applied to recover the coded image by coded aperture, and a physical prototype is developed to examine the proposed techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dicke, R.H.: Scatter-Hole Cameras for X-Rays and Gamma Rays. The Astrophysical Journal 153, L101–L106 (1968)

    Article  Google Scholar 

  2. Gottesman, S.R.: Coded apertures: past, present, and future application and design. In: Proc. SPIE, vol. 6714, pp. 1–11 (2007)

    Google Scholar 

  3. Fenimore, E.E., Cannon, T.M.: Coded Aperture Imaging with Uniformly Redundant Arrays. Appl. Opt. 17, 337–347 (1978)

    Article  Google Scholar 

  4. Slinger, C., Eismann, M., Gordon, N., Lewis, K., McDonald, G., McNie, M., Payne, D., Ridley, K., Strens, M., De Villiers, G., Wilson, R.: An investigation of the potential for the use of a high resolution adaptive coded aperture system in the mid-wave infrared. In: Proc. SPIE, vol. 6714, pp. 1–12 (2007)

    Google Scholar 

  5. Ridley, D., Villiers, D., Payne, A., Wilson, A., Slinger, W.: Visible band lens-free imaging using coded aperture technique. In: Proc. SPIE, vol. 7468, pp. 1–10 (2009)

    Google Scholar 

  6. Gottesman, S.R., Isser, A., Gigioli, J.G.W.: Adaptive coded aperture imaging: progress and potential future applications. In: Proc. SPIE, vol. 8165, pp. 1–9 (2011)

    Google Scholar 

  7. Byard, K.: Index class apertures-a class of flexible coded aperture. Appl. Opt. 51, 3453–3460 (2012)

    Article  Google Scholar 

  8. Gottesman, S.R., Schneid, E.J.: PNP - A New Class of Coded Aperture Arrays. IEEE Trans. Nucl. Sci. 33, 745–749 (1986)

    Article  Google Scholar 

  9. Gourlay, A.R., Stephen, J.B.: Geometric coded aperture masks. Appl. Opt. 22, 4042–4047 (1983)

    Article  Google Scholar 

  10. Gottesman, S.R., Fenimore, E.: New family of binary arrays for coded aperture imaging. Appl. Opt. 28, 4344–4352 (1989)

    Article  Google Scholar 

  11. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52, 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  12. Candès, E.J.: Compressive sampling. In: Proceedings of the International Congress of Mathematicians, Madrid, Spain, pp. 1433–1452 (2006)

    Google Scholar 

  13. Wagadarikar, A., John, R., Willett, R., Brady, D.: Single disperser design for coded aperture snapshot spectral imaging. Appl. Opt. 47, 44–51 (2008)

    Article  Google Scholar 

  14. Marcia, R.F., Harmany, Z.T., Willett, R.M.: Compressive coded aperture imaging. In: Proc. SPIE, vol. 7246, pp. 1–13 (2009)

    Google Scholar 

  15. Llull, P., Liao, X., Yuan, X., Yang, J., Kittle, D., Carin, L., Sapiro, G., Brady, D.: Coded aperture compressive temporal imaging. Opt. Express 21, 526–545 (2013)

    Article  Google Scholar 

  16. Caroli, E., Stephen, J.B., Dicocco, G., Natalucci, L., Spizzichino, A.: Coded Aperture Imaging in X-Ray and Gamma-Ray Astronomy. Space Sci. Rev. 45, 349–403 (1987)

    Article  Google Scholar 

  17. Young, M.: Pinhole Optics. Appl. Opt. 10, 2763–2767 (1971)

    Article  Google Scholar 

  18. Berinde, R., Indyk, P.: Sparse recovery using sparse random matrices. MIT-CSAIL Technical Report (2008)

    Google Scholar 

  19. Born, M., Wolf, E.: Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. Cambridge U. Press (1999)

    Google Scholar 

  20. Duarte, M.F., Davenport, M.A., Takhar, D., Laska, J.N., Sun, T., Kelly, K.F., Baraniuk, R.G.: Single-pixel imaging via compressive sampling. IEEE Signal Process. Mag. 25, 83–91 (2008)

    Article  Google Scholar 

  21. Candes, E.J., Romberg, J.K., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Communications on Pure and Applied Mathematics 59, 1207–1223 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Bajwa, W.U., Haupt, J.D., Raz, G.M., Wright, S.J., Nowak, R.D.: Toeplitz-Structured Compressed Sensing Matrices. In: Proceedings of IEEE/SP 14th Workshop on Statistical Signal Processing, pp. 294–298 (2007)

    Google Scholar 

  23. Figueiredo, M., Nowak, R., Wright, S.: Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems. IEEE J. Sel. Topics Signal Process. 1, 586–597 (2007)

    Article  Google Scholar 

  24. Patsakis, C., Aroukatos, N.: LSB and DCT steganographic detection using compressive sensing. Journal of Information Hiding and Multimedia Signal Processing 5(1), 20–32 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Wang, Z., Lee, I. (2014). Interleaving and Sparse Random Coded Aperture for Lens-Free Visible Imaging. In: Pan, JS., Snasel, V., Corchado, E., Abraham, A., Wang, SL. (eds) Intelligent Data analysis and its Applications, Volume II. Advances in Intelligent Systems and Computing, vol 298. Springer, Cham. https://doi.org/10.1007/978-3-319-07773-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07773-4_25

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07772-7

  • Online ISBN: 978-3-319-07773-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics