A Novel Encryption Algorithm for Quantum Images Based on Quantum Wavelet Transform and Diffusion

Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 298)

Abstract

In this paper, a novel quantum encryption scheme for quantum images based on quantum wavelet transform (QWT) and double diffusions is proposed. Firstly, diffusion operation applied on the input quantum image, and then QWT worked on the new quantum image to transform this image to the frequency domain. and following the diffusion operation is implemented on the QWT transformed quantum image. finally ,inverse QWT are used.The encryption keys are generated by a sensitive chaotic logistic map, which guarantee the security of the scheme. at the same time,we designed the corresponding quantum circuits to demonstrates that the reasonable of the proposed scheme.

Keywords

Quantum computation Quantum image encryption QWT diffusion operation Chaotic system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Le, P.Q., et al.: Efficient color transformations on quantum images. Journal of Advanced Computational Intelligence and Intelligent Informatics 15(6), 698–706 (2011)Google Scholar
  2. 2.
    Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. R. Soc. London 400, 97–117 (1985)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Lanzagorta, M., Uhlmann, J.: Quantum algorithmic methods for computational geometry. Mathematical Structures in Computer Science 20(6), 1117–1125 (2010)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Venegas-Andraca, S.E., Bose, S.: Storing, processing and retrieving and image using quantum mechanics. In: Proc. SPIE Conf. Quantum Inf. Comput., vol. 5105, pp. 137–147 (2003)Google Scholar
  5. 5.
    Venegas-Andraca, S.E., Bose, S.: Quantum computation and image processing: New trends in artificial intelligence. In: Proceedings of the International Conference on Artifficial Intelligence, IJCAI 2003, pp. 1563–1564 (2003)Google Scholar
  6. 6.
    Trugenberger, C.: Quantum pattern regonition. Quantum Information Processing 1(6), 471–493 (2002)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Trugenberger, C.: Probabilistic quantum memories. Phys. Rev. Lett. 87, 067901 (2001)CrossRefGoogle Scholar
  8. 8.
    Trugenberger, C.: Phase transitions in quantum pattern recoginition. Phys. Rev. Lett. 89, 277903 (2002)CrossRefGoogle Scholar
  9. 9.
    Venegas-Andraca, S.E., Bose, S.: Storing, processing and retrieving an image using quantum mechanics. In: Proc. SPIE Conf. Quantum Inf. Comput., vol. 5105, pp. 137–147 (2003)Google Scholar
  10. 10.
    Latorre, J.I.: Image compression and entanglement. arXiv: quant-ph/0510031 (2005)Google Scholar
  11. 11.
    Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression and processing operations. Quantum Inf. Process. 10(1), 63–84 (2010)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Zhang, Y., Lu, K., Gao, Y.H., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process., 1–28 (2013)Google Scholar
  13. 13.
    Zhang, Y., Lu, K., Gao, Y.H., Xu, K.: A novel quantum representation for log-polar images. Quantum Inf. Process., 1–24 (2013)Google Scholar
  14. 14.
    Zhou, N., Liu, Y., Zeng, G., Zhang, J.: Novel qubit block encryption algorithm with hybrid keys. Physica A 375, 693–698 (2007)CrossRefGoogle Scholar
  15. 15.
    Zhou, R.G., Wu, Q., Zhang, M.Q., Shen, C.Y.: Quantum image Encryption and Decryption Algogorithm Based on Quantum Images Geometric Transformations. International Journal of Theoretical Physics, 1–16 (2012)Google Scholar
  16. 16.
    Yang, Y.G., Xia, J., Jia, X., Zhang, H.: Novel Image Encryption/Decryption Based on Quantum Fourier Transform and Double Phase Encoding. Quantum Inf. Process., 1–17 (2013)Google Scholar
  17. 17.
    Yang, Y.G., Jia, X., Sun, S.J., Pan, Q.X.: Quantum cryptographic algorithm for color images using quantum Fourier transform and double random-phase encoding. Information Science. Elsevier (2014)Google Scholar
  18. 18.
    Barenco, A., Ekert, A., Suominen, K.-A., Torma, P.: Approximate quantum Fourier transform and decoherence. Phys. Rev. A 54, 139 (1996)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Abd EI-Latif, A.A., Niu, X.M., Amin, M.: A new image cipher in time and frequency domains. Optics Communications 285, 4241–4251 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.School of Computer Science and TechnologyHarbin Institute of TechnologyHarbinChina

Personalised recommendations