A Novel Approach for Sustainable Supplier Selection Using Differential Evolution: A Case on Pulp and Paper Industry

  • Sunil Kumar Jauhar
  • Millie Pant
  • Ajith Abraham
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 298)


Diverse sustainable supplier selection (SSS) methodologies have been suggested by the practitioners in earlier, to find a solution to the SSS problem. A SSS problem fundamentally is a multi-criteria practice. It is a judgment of tactical significance to enterprises. The nature of this decision usually is difficult and unstructured. Optimization practices might be useful tools for these types of decision-making difficulties. During last few years, Differential Evolution has arisen as a dominating tool used for solving a variety of problems arising in numerous fields. In the current study, we present an approach to find a solution to the SSS problem using Differential Evolution in pulp and paper industry. Hence this paper presents a novel approach is to practice Differential Evolution to select the efficient sustainable suppliers providing the maximum fulfillment for the sustainable criteria determined. Finally, an illustrative example on pulp and paper industry validates the application of the present approach.


Sustainable Supplier Selection Sustainable Supply Chain Management Differential Evolution DEA 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Storn, R., Price, K.: Differential evolution—a simple and efficient adaptive scheme for global optimization over continuous spaces, Berkeley, CA, Tech. Rep. TR-95-012 (1995)Google Scholar
  2. 2.
    Plagianakos, V., Tasoulis, D., Vrahatis, M.: A Review of Major Application Areas of Differential Evolution. In: Chakraborty, U.K. (ed.) Advances in Differential Evolution. SCI, vol. 143, pp. 197–238. Springer, Berlin (2008)CrossRefGoogle Scholar
  3. 3.
    Wang, F., Jang, H.: Parameter estimation of a bio reaction model by hybrid differential evolution. In: Proceedings of IEEE Congress on Evolutionary Computation (CEC 2000), pp. 410–417 (2000)Google Scholar
  4. 4.
    Joshi, R., Sanderson, A.: Minimal representation multi sensor fusion using differential evolution. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 29(1), 63–76 (1999)CrossRefGoogle Scholar
  5. 5.
    Ilonen, J., Kamarainen, J., Lampine, J.: Differential evolution training algorithm for feed-forward neural networks. Neural Process. Lett. 17(1), 93–105 (2003)CrossRefGoogle Scholar
  6. 6.
    Ali, M., Siarry, P., Pant, M.: An efficient differential evolution based algorithm for solving multi-objective optimization. European Journal of Operational Research (2011)Google Scholar
  7. 7.
    Supply Chain Management in Pulp and Paper Industry, (accessed on February 02, 2014)
  8. 8.
    Available and Emerging Technologies For Reducing Greenhouse Gas Emissions From The Pulp and Paper Manufacturing Industry,
  9. 9.
    Philpott, A., Everett, G.: Supply chain optimisation in the paper industry. Annals of Operations Research 108(1-4), 225–237 (2001)CrossRefMATHGoogle Scholar
  10. 10.
    Martel, A., M’Barek, W., D’Amours, S.: International factors in the design of multinational supply chains: the case of Canadian pulp and paper companies. Document de travail DT-2005-AM-3, Centor, Université Laval. 10 (2005)Google Scholar
  11. 11.
    Pulp and Paper Technology | Article, (accessed on February 02, 2014)
  12. 12.
    Agarwal, P., Sahai, M., Mishra, V., Bag, M., Singh, V.: A review of multi-criteria techniques for supplier evaluation and selection. International Journal of Industrial Engineering Computations 2 (2011), doi:10 5267/j ijiec 2011 06 004Google Scholar
  13. 13.
    Weber, C.A., Current, J.R., Benton, W.C.: Vendor selection criteria and methods. European Journal of Operational Research 50(1), 2–18 (1991)CrossRefGoogle Scholar
  14. 14.
    Degraeve, Z., Labro, E., Roodhooft, F.: An evaluation of vendor selection models from a total cost of ownership perspective. European Journal of Operational Research 125(1), 34–58 (1991)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Boer, L., Labro, E., Morlacchi, P.: A review of methods supporting supplier selection. European Journal of Purchasing & Supply Management 7(2), 75–89 (2000)CrossRefGoogle Scholar
  16. 16.
    Holt, G.D.: Which Contractor Selection Methodology? International Journal of Project Management 16(3), 153–164 (1998)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Aamer, A.M., Sawhney, R.: Review of Suppliers Selection from a Production Perspective. In: Proc. IIE Conference, pp. 2135–2140 (2004)Google Scholar
  18. 18.
    Ho, W., Xu, X., Dey, P.K.: Multi-criteria decision making approaches for supplier evaluation and selection: A literature review. European Journal of Operational Research 202, 16–24 (2010)CrossRefMATHGoogle Scholar
  19. 19.
    Tahriri, F., Osman, M.R., Ali, A., Yusuff, R.M.: A review of supplier selection methods in manufacturing industries. Suranaree Journal of Science and Technology 15(3), 201–208 (2008)Google Scholar
  20. 20.
    Cheraghi, S.H., Dadashzadeh, M., Subramanian, M.: Critical success factors for supplier selection: An update. Journal of Applied Business Research 20(2), 91–108 (2011)Google Scholar
  21. 21.
    Jauha, S.K., Pant, M.: Recent trends in supply chain management: A soft computing approach. In: Jagdish, C., Bansal, P., Singh, K., Deep, M., Pant, A. (eds.) Proceedings of Seventh International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA 2012). AISC, vol. 202, pp. 465–478. Springer, India (2013)CrossRefGoogle Scholar
  22. 22.
    Jauhar, S.K., Pant, M., Deep, A.: An Approach to Solve Multi-criteria Supplier Selection While Considering Environmental Aspects Using Differential Evolution. In: Panigrahi, B.K., Suganthan, P.N., Das, S., Dash, S.S. (eds.) SEMCCO 2013, Part I. LNCS, vol. 8297, pp. 199–208. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  23. 23.
    Jauhar, S.K., Pant, M.: Supplier selection in SCM: A decision making approach. In: Proceeding of OPTIMA 2012, University of Delhi, India, November 29-December 01 (2012)Google Scholar
  24. 24.
    Jauhar, S., Pant, M., Deep, A.: Differential Evolution for Supplier Selection Problem: A DEA Based Approach. In: Pant, M., Deep, K., Nagar, A., Bansal, J.C. (eds.) Third International Conference on Soft Computing for Problem Solving. AISC, vol. 258, pp. 343–353. Springer, India (2014)CrossRefGoogle Scholar
  25. 25.
    Jayal, A.D., Badurdeen, F., Dillon Jr., O.W., Jawahir, I.S.: Sustainable manufacturing: Modeling and optimization challenges at the product, process and system levels. CIRP Journal of Manufacturing Science and Technology 2(3), 144–152 (2010)CrossRefGoogle Scholar
  26. 26.
    Floridi, M., Pagni, S., Falorni, S., Luzzati, T.: An exercise in composite indicators construction: Assessing the sustainability of Italian regions. Ecological Economics 70(8), 1440–1447 (2011)CrossRefGoogle Scholar
  27. 27.
    Luthe, T., Schuckert, M.: Socially Responsible Investing–Implications for Leveraging Sustainable Development. In: Trends and Issues in Global Tourism 2011, pp. 315–321. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  28. 28.
    Paoletti, M.G., Gomiero, T., Pimentel, D.: Introduction to the special issue: Towards a more sustainable agriculture. Critical Reviews in Plant Sciences 30(1-2), 2–5 (2011)CrossRefGoogle Scholar
  29. 29.
    Büyüközkan, G., Çifçi, G.: A novel fuzzy multi-criteria decision framework for sustainable supplier selection with incomplete information. Computers in Industry 62(2), 164–174 (2011)CrossRefGoogle Scholar
  30. 30.
    Shirouyehzad, H., Lotfi, F.H., Dabestani, R.: A data envelopment analysis approach based on the service quality concept for vendor selection. In: International Conference on Computers & Industrial Engineering, CIE 2009, July 6-9, pp. 426–430 (2009), doi:10.1109/ICCIE.2009.5223823Google Scholar
  31. 31.
  32. 32.
    Dimitris, K.S., Lamprini, V.S., Yiannis, G.S.: Data envelopment analysis with nonlinear virtual inputs and outputs. European Journal of Operational Research 202, 604–613 (2009)Google Scholar
  33. 33.
    Ramanathan, R.: An Introduction to Data Envelopment Analysis: A Tool for Performance Measurement. Sage Publication Ltd., New Delhi (2003)Google Scholar
  34. 34.
    Wen, U.P., Chi, J.M.: Developing green supplier selection procedure: A DEA approach. In: 2010 IEEE 17th International Conference on Industrial Engineering and Engineering Management (IE&EM), October 29-31, pp. 70–74 (2010), doi:10.1109/ICIEEM.2010.5646615Google Scholar
  35. 35.
    Vörösmarty, G., Dobos, I.: Supplier selection and evaluation decision considering environmental aspects.149. sz. Mőhelytanulmány, HU (October 2012) ISSN 1786-3031Google Scholar
  36. 36.
    Kumar, P., Mogha, S.K., Pant, M.: Differential Evolution for Data Envelopment Analysis. In: Deep, K., Nagar, A., Pant, M., Bansal, J.C. (eds.) Proceedings of the International Conference on SocProS 2011. AISC, vol. 130, pp. 311–319. Springer, Heidelberg (2012)Google Scholar
  37. 37.
    Srinivas, T.: Data envelopment analysis: models and extensions. Production/Operation Management Decision Line, 8–11 (2000)Google Scholar
  38. 38.
    Charnes, A., Cooper, W.W., Rhodes, E.: Measuring the efficiency of decision making units. European Journal of Operational Research 2(6), 429–444 (1978)CrossRefMATHMathSciNetGoogle Scholar
  39. 39.
    Banker, R.D., Charnes, A., Cooper, W.W.: Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science 30, 1078–1092 (1984)CrossRefMATHGoogle Scholar
  40. 40.
    Jouni, L.: A constraint handling approach for differential evolution algorithm. In: Proceeding of IEEE Congress on Evolutionary Computation (CEC 2002), pp. 1468–1473 (2002)Google Scholar
  41. 41.
    Coello, C.A.C.: Theoretical and numerical constraint handling techniques used with evolutionary algorithms: a survey of the state of the art. Computer Methods in Applied Mechanics and Engineering 191(11-12), 1245–1287 (2002)CrossRefMATHMathSciNetGoogle Scholar
  42. 42.
    Ray, T., Kang, T., Chye, S.K.: An evolutionary algorithm for constraint optimization. In: Whitley, D., Goldberg, D., Cantu-Paz, E., Spector, L., Parmee, I., Beyer, H.G. (eds.) Proceeding of the Genetic and Evolutionary Computation Conference (GECCO 2000), pp. 771–777 (2000)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Sunil Kumar Jauhar
    • 1
  • Millie Pant
    • 1
  • Ajith Abraham
    • 2
  1. 1.Indian Institute of TechnologyRoorkeeIndia
  2. 2.Machine Intelligence Research Labs (MIR Labs)Scientific Network for Innovation and Research ExcellenceAuburnUSA

Personalised recommendations