HomeCare, Elder People Monitoring System and TV Communication

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 430)


For seniors who require continuous care and do not have the resources to have an assistant continuously, have a low cost system that monitors their environment allows them to have independence, while moving in a secure environment. In addition, accessing to basic services through a platform accessible to all people, including TV, facilitates their integration into the online society.


Context aware system multi-agent system Wireless sensor networks 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tapia, E.M., Intille, S.S., Larson, K.: Activity recognition in the home using simple and ubiquitous sensors. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 158–175. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Noury, N., Hervé, T., Rialle, V., Virone, G., Mercier, E., Morey, G., Porcheron, T.: Monitoring behavior in home using a smart fall sensor and position sensors. In: 1st Annual International Conference on Microtechnologies in Medicine and Biology, pp. 607–610. IEEE (2000)Google Scholar
  3. 3.
    Lymberopoulos, D., Bamis, A., Savvides, A.: Extracting spatiotemporal human activity patterns in assisted living using a home sensor network. Universal Access in the Information Society 10(2), 125–138 (2011)CrossRefGoogle Scholar
  4. 4.
    Noury, N.: A smart sensor for the remote follow up of activity and fall detection of the elderly. In: 2nd Annual International IEEE-EMB Special Topic Conference on Microtechnologies in Medicine & Biology, pp. 314–317. IEEE (2002)Google Scholar
  5. 5.
    Noury, N., Fleury, A., Rumeau, P., Bourke, A.K., Laighin, G.O., Rialle, V., Lundy, J.E.: Fall detection-principles and methods. In: 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2007, pp. 1663–1666. IEEE (August 2007)Google Scholar
  6. 6.
    Rao, B.P., Saluia, P., Sharma, N., Mittal, A., Sharma, S.V.: Cloud computing for Internet of Things & sensing based applications. In: 2012 Sixth International Conference on Sensing Technology (ICST), pp. 374–380. IEEE (December 2012)Google Scholar
  7. 7.
    Alonso, R.S., Tapia, D.I., Villarrubia, G., De Paz, J.F.: Agent technology and wireless sensor networks for monitoring patients in residences and their homes. In: Corchado, J.M., et al. (eds.) PAAMS 2013. CCIS, vol. 365, pp. 417–428. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Drools. The Business Logic Integration Platform,
  9. 9.
    Berstel, B.: Extending the RETE algorithm for event management. In: On Proceedings of Ninth International Symposium on Temporal Representation and Reasoning, TIME 2002 (2002)Google Scholar
  10. 10.
    Sánchez, A., Villarrubia, G., Zato, C., Rodríguez, S., Chamoso, P.: A Gateway Protocol Based on FIPA-ACL for the New Agent Platform PANGEA. In: Pérez, J.B., et al. (eds.) Trends in Pract. Appl. of Agents & Multiagent Syst. AISC, vol. 221, pp. 41–51. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    ZigBee Standards Organization: ZigBee Specification Document 053474r13. ZigBee Alliance (2006)Google Scholar
  12. 12.
    Alonso, R.S., Tapia, D.I., Bajo, J., García, Ó., de Paz, J.F., Corchado, J.M.: Implementing a hardware-embedded reactive agents platform based on a service-oriented architecture over heterogeneous wireless sensor networks 11(1), 151–166 (January 2013)Google Scholar
  13. 13.
    de Paz, J.F., Alonso, R.S., Tapia, D.I.: A Case-Based Planning Mechanism for a Hardware-Embedded Reactive Agents Platform. In: Casillas, J., Martínez-López, F.J., Corchado, J.M. (eds.) Management of Intelligent Systems. AISC, vol. 171, pp. 121–130. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Bajo, J., Corchado, J.M.: Evaluation and monitoring of the air-sea interaction using a CBR-agents approach. In: Muñoz-Ávila, H., Ricci, F. (eds.) ICCBR 2005. LNCS (LNAI), vol. 3620, pp. 50–62. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Bajo, J., De Paz, J.F., Rodríguez, S., González, A.: Multi-agent system to monitor oceanic environments. Integrated Computer-Aided Engineering 17(2), 131–144 (2010)Google Scholar
  16. 16.
    Borrajo, M.L., Baruque, B., Corchado, E., Bajo, J., Corchado, J.: Hybrid neural intelligent system to predict business failure in small-to-medium-size enterprises. International Journal of Neural Systems 21(04), 277–296 (2011)CrossRefGoogle Scholar
  17. 17.
    Carneiro, D., Castillo, J., Novais, P., Fernández-Caballero, A., Neves, J.: Multimodal Behavioural Analysis for Non-invasive Stress Detection. Expert Systems With Applications 39(18), 13376–13389 (2012) ISSN: 0957-4174CrossRefGoogle Scholar
  18. 18.
    Corchado, J.M., Aiken, J.: Hybrid artificial intelligence methods in oceanographic forecast models. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 32(4), 307–313 (2002)CrossRefGoogle Scholar
  19. 19.
    Corchado, J.M., De Paz, J.F., Rodríguez, S., Bajo, J.: Model of experts for decision support in the diagnosis of leukemia patients. Artificial Intelligence in Medicine 46(3), 179–200 (2009)CrossRefGoogle Scholar
  20. 20.
    Corchado, J.M., Bajo, J., De Paz, J.F., Rodríguez, S.: An execution time neural-CBR guidance assistant. Neurocomputing 72(13), 2743–2753 (2009); De Paz, J.F., Rodríguez, S., Bajo, J., Corchado, J.: Case-based reasoning as a decision support system for cancer diagnosis: A case study. International Journal of Hybrid Intelligent Systems 6(2), 97–110 (2009)Google Scholar
  21. 21.
    Fdez-Riverola, F., Corchado, J.M.: CBR based system for forecasting red tides. Knowledge-Based Systems 16(5), 321–328 (2003)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Fraile, J.A., Bajo, J., Corchado, J.M., Abraham, A.: Applying wearable solutions in dependent environments. IEEE Transactions on Information Technology in Biomedicine 14(6), 1459–1467 (2011)CrossRefGoogle Scholar
  23. 23.
    Garijo, F., Gómez-Sanz, J.J., Pavón, J., Massonet, P.: Multi-agent system organization: An engineering perspective. Pre-Proceeding of the 10th European Workshop on Modeling Autonomous Agents in a Multi-Agent World (MAAMAW 2001) (2001)Google Scholar
  24. 24.
    Griol, D., García-Herrero, J., Molina, J.M.: Combining heterogeneous inputs for the development of adaptive and multimodal interaction systems. Advances in Distributed Computing and Artificial Intelligence JournalGoogle Scholar
  25. 25.
    Pavon, J., Sansores, C., Gomez-Sanz, J.J.: Modelling and simulation of social systems with INGENIAS. International Journal of Agent-Oriented Software Engineering 2(2), 196–221 (2008)CrossRefGoogle Scholar
  26. 26.
    Pinzón, C.I., Bajo, J., De Paz, J.F., Corchado, J.M.: S-MAS: An adaptive hierarchical distributed multi-agent architecture for blocking malicious SOAP messages within Web Services environments. Expert Systems with Applications 38(5), 5486–5499Google Scholar
  27. 27.
    Rodríguez, S., Pérez-Lancho, B., De Paz, J.F., Bajo, J., Corchado, J.M.: Ovamah: Multiagent-based adaptive virtual organizations. In: 12th International Conference on Information Fusion, FUSION 2009, pp. 990–997 (2009)Google Scholar
  28. 28.
    Rodríguez, S., de Paz, Y., Bajo, J., Corchado, J.M.: Social-based planning model for multiagent systems. Expert Systems with Applications 38(10), 13005–13023 (2011)CrossRefGoogle Scholar
  29. 29.
    Sánchez-Pi, N., Carbó, J., Molina, J.M.: A Knowledge-Based System Approach for a Context-Aware System. Knowledge-Based Systems 27, 1–17 (2012)CrossRefGoogle Scholar
  30. 30.
    Tapia, D.I., Alonso, R.S., De Paz, J.F., Corchado, J.M.: Introducing a distributed architecture for heterogeneous wireless sensor networks. In: Omatu, S., Rocha, M.P., Bravo, J., Fernández, F., Corchado, E., Bustillo, A., Corchado, J.M. (eds.) IWANN 2009, Part II. LNCS, vol. 5518, pp. 116–123. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  31. 31.
    Tapia, D.I., Abraham, A., Corchado, J.M., Alonso, R.S.: Agents and ambient intelligence: case studies. Journal of Ambient Intelligence and Humanized Computing 1(2), 85–93 (2010)CrossRefGoogle Scholar
  32. 32.
    Tapia, D.I., Rodríguez, S., Bajo, J., Corchado, J.M.: FUSION@, a SOA-based multi-agent architecture. In: International Symposium on Distributed Computing and Artificial Intelligence 2008 (DCAI 2008), pp. 99–107 (2008)Google Scholar
  33. 33.
    Tapia, D.I., Alonso, R.S., García, Ó., de la Prieta, F., Pérez-Lancho, B.: Cloud-IO: Cloud Computing Platform for the Fast Deployment of Services over Wireless Sensor Networks. In: Uden, L., Herrera, F., Bajo, J., Corchado, J.M. (eds.) 7th International Conference on KMO. AISC, vol. 172, pp. 493–504. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  34. 34.
    Zato, C., et al.: PANGEA – platform for automatic coNstruction of orGanizations of intElligent agents. In: Omatu, S., Paz Santana, J.F., González, S.R., Molina, J.M., Bernardos, A.M., Rodríguez, J.M.C. (eds.) Distributed Computing and Artificial Intelligence. AISC, vol. 151, pp. 229–240. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Computer Science and AutomationUniversity of SalamancaSalamancaSpain
  2. 2.Center for Information and Communication Technology (CICT)Universiti Teknologi MalaysiaSkudaiMalaysia

Personalised recommendations