Skip to main content

Rab GEFs and GAPs: The Enigma Variations

  • Chapter
  • First Online:
Ras Superfamily Small G Proteins: Biology and Mechanisms 2

Abstract

Rab GTPases are key regulators of membrane traffic activated on the surface of organelle and vesicle membranes during vesicle trafficking events, cell polarisation and autophagy. Rabs undergo a cycle of activation involving GTP binding and inactivation involving GTP hydrolysis in response to cellular regulators. Each Rab has a cognate GDP–GTP exchange factor (GEF) promoting release of GDP and subsequent binding of GTP, and a GTPase activating protein (GAP) stimulating the slow intrinsic GTP hydrolysis. Together these GEF and GAP regulators determine when and where a specific Rab is activated, and how long its activity will persist. Rab GEFs fall into a number of discrete families, the largest of which are the Vps9 domain, DENN and DENN domain-related proteins. Other Rab GEF families, including TRAPP, Ric1-Rgp1, Mon1-Ccz1 and Hps1-Hps4, are comprised of two or more polypeptide chains. By contrast, almost all known Rab GAPs possess a TBC1 domain. Here I will discuss the mechanisms by which these GEFs and GAPs regulate Rab GTPases, highlighting common themes and points of difference, and briefly outlining the cellular processes they regulate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afawi Z, Mandelstam S, Korczyn AD, Kivity S, Walid S, Shalata A, Oliver KL, Corbett M, Gecz J, Berkovic SF, Jackson GD (2013) TBC1D24 mutation associated with focal epilepsy, cognitive impairment and a distinctive cerebro-cerebellar malformation. Epilepsy Res 105(1–2):240–244. doi:10.1016/j.eplepsyres.2013.02.005

    PubMed  CAS  Google Scholar 

  • Albert S, Gallwitz D (2000) Msb4p, a protein involved in Cdc42p-dependent organization of the actin cytoskeleton, is a Ypt/Rab-specific GAP. Biol Chem 381(5–6):453–456. doi:10.1515/BC.2000.059

    PubMed  CAS  Google Scholar 

  • Albert S, Will E, Gallwitz D (1999) Identification of the catalytic domains and their functionally critical arginine residues of two yeast GTPase-activating proteins specific for Ypt/Rab transport GTPases. EMBO J 18(19):5216–5225

    PubMed  CAS  PubMed Central  Google Scholar 

  • Allaire PD, Ritter B, Thomas S, Burman JL, Denisov AY, Legendre-Guillemin V, Harper SQ, Davidson BL, Gehring K, McPherson PS (2006) Connecdenn, a novel DENN domain-containing protein of neuronal clathrin-coated vesicles functioning in synaptic vesicle endocytosis. J Neurosci 26(51):13202–13212. doi:10.1523/JNEUROSCI.4608-06.2006

    PubMed  CAS  Google Scholar 

  • Allaire PD, Marat AL, Dall’Armi C, Di Paolo G, McPherson PS, Ritter B (2010) The Connecdenn DENN domain: a GEF for Rab35 mediating cargo-specific exit from early endosomes. Mol Cell 37(3):370–382. doi:10.1016/j.molcel.2009.12.037

    PubMed  CAS  PubMed Central  Google Scholar 

  • Allan BB, Moyer BD, Balch WE (2000) Rab1 recruitment of p115 into a cis-SNARE complex: programming budding COPII vesicles for fusion. Science 289(5478):444–448. doi:10.1126/science.289.5478.444, 8682 [pii]

    PubMed  CAS  Google Scholar 

  • Alper S, Laws R, Lackford B, Boyd WA, Dunlap P, Freedman JH, Schwartz DA (2008) Identification of innate immunity genes and pathways using a comparative genomics approach. Proc Natl Acad Sci U S A 105(19):7016–7021. doi:10.1073/pnas.0802405105

    PubMed  CAS  PubMed Central  Google Scholar 

  • Barr FA (2013) Rab GTPases and membrane identity: causal or inconsequential? J Cell Biol 202(2):191–199. doi:10.1083/jcb.201306010, jcb.201306010 [pii]

    PubMed  CAS  PubMed Central  Google Scholar 

  • Barr F, Lambright DG (2010) Rab GEFs and GAPs. Curr Opin Cell Biol 22(4):461–470. doi:10.1016/j.ceb.2010.04.007, S0955-0674(10)00059-1 [pii]

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bensen ES, Yeung BG, Payne GS (2001) Ric1p and the Ypt6p GTPase function in a common pathway required for localization of trans-Golgi network membrane proteins. Mol Biol Cell 12(1):13–26

    PubMed  CAS  PubMed Central  Google Scholar 

  • Blumer J, Rey J, Dehmelt L, Mazel T, Wu YW, Bastiaens P, Goody RS, Itzen A (2013) RabGEFs are a major determinant for specific Rab membrane targeting. J Cell Biol 200(3):287–300. doi:10.1083/jcb.201209113

    PubMed  PubMed Central  Google Scholar 

  • Boriack-Sjodin PA, Margarit SM, Bar-Sagi D, Kuriyan J (1998) The structural basis of the activation of Ras by Sos. Nature 394(6691):337–343. doi:10.1038/28548

    PubMed  CAS  Google Scholar 

  • Brown TL, Howe PH (1998) MADD is highly homologous to a Rab3 guanine-nucleotide exchange protein (Rab3-GEP). Curr Biol 8(6):R191

    PubMed  CAS  Google Scholar 

  • Burd CG, Mustol PA, Schu PV, Emr SD (1996) A yeast protein related to a mammalian Ras-binding protein, Vps9p, is required for localization of vacuolar proteins. Mol Cell Biol 16(5):2369–2377

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cai Y, Chin HF, Lazarova D, Menon S, Fu C, Cai H, Sclafani A, Rodgers DW, De La Cruz EM, Ferro-Novick S, Reinisch KM (2008) The structural basis for activation of the Rab Ypt1p by the TRAPP membrane-tethering complexes. Cell 133(7):1202–1213. doi:10.1016/j.cell.2008.04.049

    PubMed  CAS  PubMed Central  Google Scholar 

  • Carney DS, Davies BA, Horazdovsky BF (2006) Vps9 domain-containing proteins: activators of Rab5 GTPases from yeast to neurons. Trends Cell Biol 16(1):27–35. doi:10.1016/j.tcb.2005.11.001

    PubMed  CAS  Google Scholar 

  • Carroll B, Mohd-Naim N, Maximiano F, Frasa MA, McCormack J, Finelli M, Thoresen SB, Perdios L, Daigaku R, Francis RE, Futter C, Dikic I, Braga VM (2013) The TBC/RabGAP Armus coordinates Rac1 and Rab7 functions during autophagy. Dev Cell 25(1):15–28. doi:10.1016/j.devcel.2013.03.005

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chesneau L, Dupre S, Burdina A, Roger J, Le Panse S, Jacquet M, Cuif MH (2004) Gyp5p and Gyl1p are involved in the control of polarized exocytosis in budding yeast. J Cell Sci 117(Pt 20):4757–4767. doi:10.1242/jcs.01349

    PubMed  CAS  Google Scholar 

  • Chesneau L, Prigent M, Boy-Marcotte E, Daraspe J, Fortier G, Jacquet M, Verbavatz JM, Cuif MH (2008) Interdependence of the Ypt/RabGAP Gyp5p and Gyl1p for recruitment to the sites of polarized growth. Traffic 9(4):608–622. doi:10.1111/j.1600-0854.2007.00699.x

    PubMed  CAS  Google Scholar 

  • Chiang PW, Oiso N, Gautam R, Suzuki T, Swank RT, Spritz RA (2003) The Hermansky-Pudlak syndrome 1 (HPS1) and HPS4 proteins are components of two complexes, BLOC-3 and BLOC-4, involved in the biogenesis of lysosome-related organelles. J Biol Chem 278(22):20332–20337. doi:10.1074/jbc.M300090200

    PubMed  CAS  Google Scholar 

  • De Antoni A, Schmitzova J, Trepte HH, Gallwitz D, Albert S (2002) Significance of GTP hydrolysis in Ypt1p-regulated endoplasmic reticulum to Golgi transport revealed by the analysis of two novel Ypt1-GAPs. J Biol Chem 277(43):41023–41031. doi:10.1074/jbc.M205783200, M205783200 [pii]

    PubMed  Google Scholar 

  • De Arras L, Yang IV, Lackford B, Riches DW, Prekeris R, Freedman JH, Schwartz DA, Alper S (2012) Spatiotemporal inhibition of innate immunity signaling by the Tbc1d23 RAB-GAP. J Immunol 188(6):2905–2913. doi:10.4049/jimmunol.1102595

    PubMed  PubMed Central  Google Scholar 

  • Delprato A, Lambright DG (2007) Structural basis for Rab GTPase activation by VPS9 domain exchange factors. Nat Struct Mol Biol 14(5):406–412. doi:10.1038/nsmb1232

    PubMed  CAS  PubMed Central  Google Scholar 

  • Delprato A, Merithew E, Lambright DG (2004) Structure, exchange determinants, and family-wide rab specificity of the tandem helical bundle and Vps9 domains of Rabex-5. Cell 118(5):607–617. doi:10.1016/j.cell.2004.08.009

    PubMed  CAS  Google Scholar 

  • Denef N, Chen Y, Weeks SD, Barcelo G, Schupbach T (2008) Crag regulates epithelial architecture and polarized deposition of basement membrane proteins in Drosophila. Dev Cell 14(3):354–364. doi:10.1016/j.devcel.2007.12.012

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dong G, Medkova M, Novick P, Reinisch KM (2007) A catalytic coiled coil: structural insights into the activation of the Rab GTPase Sec4p by Sec2p. Mol Cell 25(3):455–462. doi:10.1016/j.molcel.2007.01.013

    PubMed  CAS  PubMed Central  Google Scholar 

  • Du LL, Novick P (2001) Yeast rab GTPase-activating protein Gyp1p localizes to the Golgi apparatus and is a negative regulator of Ypt1p. Mol Biol Cell 12(5):1215–1226

    PubMed  CAS  PubMed Central  Google Scholar 

  • Du LL, Collins RN, Novick PJ (1998) Identification of a Sec4p GTPase-activating protein (GAP) as a novel member of a Rab GAP family. J Biol Chem 273(6):3253–3256

    PubMed  CAS  Google Scholar 

  • Dumas JJ, Zhu Z, Connolly JL, Lambright DG (1999) Structural basis of activation and GTP hydrolysis in Rab proteins. Structure 7(4):413–423

    PubMed  CAS  Google Scholar 

  • Eitzen G, Will E, Gallwitz D, Haas A, Wickner W (2000) Sequential action of two GTPases to promote vacuole docking and fusion. EMBO J 19(24):6713–6720. doi:10.1093/emboj/19.24.6713

    PubMed  CAS  PubMed Central  Google Scholar 

  • Elias M, Brighouse A, Gabernet-Castello C, Field MC, Dacks JB (2012) Sculpting the endomembrane system in deep time: high resolution phylogenetics of Rab GTPases. J Cell Sci 125(Pt 10):2500–2508. doi:10.1242/jcs.101378

    PubMed  CAS  PubMed Central  Google Scholar 

  • Falace A, Filipello F, La Padula V, Vanni N, Madia F, De Pietri Tonelli D, de Falco FA, Striano P, Dagna Bricarelli F, Minetti C, Benfenati F, Fassio A, Zara F (2010) TBC1D24, an ARF6-interacting protein, is mutated in familial infantile myoclonic epilepsy. Am J Hum Genet 87(3):365–370. doi:10.1016/j.ajhg.2010.07.020

    PubMed  CAS  PubMed Central  Google Scholar 

  • Figueiredo AC, Wasmeier C, Tarafder AK, Ramalho JS, Baron RA, Seabra MC (2008) Rab3GEP is the non-redundant guanine nucleotide exchange factor for Rab27a in melanocytes. J Biol Chem 283(34):23209–23216

    PubMed  CAS  PubMed Central  Google Scholar 

  • Frasa MA, Maximiano FC, Smolarczyk K, Francis RE, Betson ME, Lozano E, Goldenring J, Seabra MC, Rak A, Ahmadian MR, Braga VM (2010) Armus is a Rac1 effector that inactivates Rab7 and regulates E-cadherin degradation. Curr Biol 20(3):198–208. doi:10.1016/j.cub.2009.12.053

    PubMed  CAS  Google Scholar 

  • Fuchs E, Haas AK, Spooner RA, Yoshimura S, Lord JM, Barr FA (2007) Specific Rab GTPase-activating proteins define the Shiga toxin and epidermal growth factor uptake pathways. J Cell Biol 177(6):1133–1143. doi:10.1083/jcb.200612068, jcb.200612068 [pii]

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gabernet-Castello C, O’Reilly AJ, Dacks JB, Field MC (2013) Evolution of Tre-2/Bub2/Cdc16 (TBC) Rab GTPase-activating proteins. Mol Biol Cell 24(10):1574–1583. doi:10.1091/mbc.E12-07-0557

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gao XD, Albert S, Tcheperegine SE, Burd CG, Gallwitz D, Bi E (2003) The GAP activity of Msb3p and Msb4p for the Rab GTPase Sec4p is required for efficient exocytosis and actin organization. J Cell Biol 162(4):635–646. doi:10.1083/jcb.200302038

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gasper R, Thomas C, Ahmadian MR, Wittinghofer A (2008) The role of the conserved switch II glutamate in guanine nucleotide exchange factor-mediated nucleotide exchange of GTP-binding proteins. J Mol Biol 379(1):51–63. doi:10.1016/j.jmb.2008.03.011, S0022-2836(08)00302-1 [pii]

    PubMed  CAS  Google Scholar 

  • Gavriljuk K, Gazdag EM, Itzen A, Kotting C, Goody RS, Gerwert K (2012) Catalytic mechanism of a mammalian Rab.RabGAP complex in atomic detail. Proc Natl Acad Sci U S A 109(52):21348–21353. doi:10.1073/pnas.1214431110, 1214431110 [pii]

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gerondopoulos A, Langemeyer L, Liang JR, Linford A, Barr FA (2012) BLOC-3 mutated in Hermansky-Pudlak syndrome is a Rab32/38 guanine nucleotide exchange factor. Curr Biol 22(22):2135–2139. doi:10.1016/j.cub.2012.09.020

    PubMed  CAS  PubMed Central  Google Scholar 

  • Girod A, Storrie B, Simpson JC, Johannes L, Goud B, Roberts LM, Lord JM, Nilsson T, Pepperkok R (1999) Evidence for a COP-I-independent transport route from the Golgi complex to the endoplasmic reticulum. Nat Cell Biol 1(7):423–430. doi:10.1038/15658

    PubMed  CAS  Google Scholar 

  • Gitler AD, Bevis BJ, Shorter J, Strathearn KE, Hamamichi S, Su LJ, Caldwell KA, Caldwell GA, Rochet JC, McCaffery JM, Barlowe C, Lindquist S (2008) The Parkinson’s disease protein alpha-synuclein disrupts cellular Rab homeostasis. Proc Natl Acad Sci U S A 105(1):145–150. doi:10.1073/pnas.0710685105, 0710685105 [pii]

    PubMed  CAS  PubMed Central  Google Scholar 

  • Goud B, Salminen A, Walworth NC, Novick PJ (1988) A GTP-binding protein required for secretion rapidly associates with secretory vesicles and the plasma membrane in yeast. Cell 53(5):753–768. doi:10.1016/0092-8674(88)90093-1, 0092-8674(88)90093-1 [pii]

    PubMed  CAS  Google Scholar 

  • Guven A, Tolun A (2013) TBC1D24 truncating mutation resulting in severe neurodegeneration. J Med Genet 50(3):199–202. doi:10.1136/jmedgenet-2012-101313

    PubMed  CAS  Google Scholar 

  • Haas AK, Fuchs E, Kopajtich R, Barr FA (2005) A GTPase-activating protein controls Rab5 function in endocytic trafficking. Nat Cell Biol 7(9):887–893. doi:10.1038/ncb1290, ncb1290 [pii]

    PubMed  CAS  Google Scholar 

  • Haas AK, Yoshimura S, Stephens DJ, Preisinger C, Fuchs E, Barr FA (2007) Analysis of GTPase-activating proteins: Rab1 and Rab43 are key Rabs required to maintain a functional Golgi complex in human cells. J Cell Sci 120(Pt 17):2997–3010. doi:10.1242/jcs.014225, jcs.014225 [pii]

    PubMed  CAS  Google Scholar 

  • Hama H, Tall GG, Horazdovsky BF (1999) Vps9p is a guanine nucleotide exchange factor involved in vesicle-mediated vacuolar protein transport. J Biol Chem 274(21):15284–15291

    PubMed  CAS  Google Scholar 

  • Hoffman-Sommer M, Migdalski A, Rytka J, Kucharczyk R (2005) Multiple functions of the vacuolar sorting protein Ccz1p in Saccharomyces cerevisiae. Biochem Biophys Res Commun 329(1):197–204. doi:10.1016/j.bbrc.2005.01.107

    PubMed  CAS  Google Scholar 

  • Horiuchi H, Lippe R, McBride HM, Rubino M, Woodman P, Stenmark H, Rybin V, Wilm M, Ashman K, Mann M, Zerial M (1997) A novel Rab5 GDP/GTP exchange factor complexed to Rabaptin-5 links nucleotide exchange to effector recruitment and function. Cell 90(6):1149–1159. doi:10.1016/S0092-8674(00)80380-3, S0092-8674(00)80380-3 [pii]

    PubMed  CAS  Google Scholar 

  • Hsu C, Morohashi Y, Yoshimura S, Manrique-Hoyos N, Jung S, Lauterbach MA, Bakhti M, Gronborg M, Mobius W, Rhee J, Barr FA, Simons M (2010) Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A-C. J Cell Biol 189(2):223–232. doi:10.1083/jcb.200911018, jcb.200911018 [pii]

    PubMed  CAS  PubMed Central  Google Scholar 

  • Huber SK, Scheidig AJ (2005) High resolution crystal structures of human Rab4a in its active and inactive conformations. FEBS Lett 579(13):2821–2829. doi:10.1016/j.febslet.2005.04.020

    PubMed  CAS  Google Scholar 

  • Hutagalung AH, Novick PJ (2011) Role of Rab GTPases in membrane traffic and cell physiology. Physiol Rev 91(1):119–149. doi:10.1152/physrev.00059.2009, 91/1/119 [pii]

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ingmundson A, Delprato A, Lambright DG, Roy CR (2007) Legionella pneumophila proteins that regulate Rab1 membrane cycling. Nature 450(7168):365–369

    PubMed  CAS  Google Scholar 

  • Iwasaki K, Staunton J, Saifee O, Nonet M, Thomas JH (1997) aex-3 encodes a novel regulator of presynaptic activity in C. elegans. Neuron 18(4):613–622

    PubMed  CAS  Google Scholar 

  • Kakuta S, Yamamoto H, Negishi L, Kondo-Kakuta C, Hayashi N, Ohsumi Y (2012) Atg9 vesicles recruit vesicle-tethering proteins Trs85 and Ypt1 to the autophagosome formation site. J Biol Chem 287(53):44261–44269. doi:10.1074/jbc.M112.411454

    PubMed  CAS  PubMed Central  Google Scholar 

  • Khosravi-Far R, Lutz RJ, Cox AD, Conroy L, Bourne JR, Sinensky M, Balch WE, Buss JE, Der CJ (1991) Isoprenoid modification of rab proteins terminating in CC or CXC motifs. Proc Natl Acad Sci U S A 88(14):6264–6268

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kim YG, Raunser S, Munger C, Wagner J, Song YL, Cygler M, Walz T, Oh BH, Sacher M (2006) The architecture of the multisubunit TRAPP I complex suggests a model for vesicle tethering. Cell 127(4):817–830. doi:10.1016/j.cell.2006.09.029

    PubMed  CAS  Google Scholar 

  • Kinch LN, Grishin NV (2006) Longin-like folds identified in CHiPS and DUF254 proteins: vesicle trafficking complexes conserved in eukaryotic evolution. Protein Sci 15(11):2669–2674. doi:10.1110/ps.062419006

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kloer DP, Rojas R, Ivan V, Moriyama K, van Vlijmen T, Murthy N, Ghirlando R, van der Sluijs P, Hurley JH, Bonifacino JS (2010) Assembly of the biogenesis of lysosome-related organelles complex-3 (BLOC-3) and its interaction with Rab9. J Biol Chem 285(10):7794–7804. doi:10.1074/jbc.M109.069088

    PubMed  CAS  PubMed Central  Google Scholar 

  • Klopper TH, Kienle N, Fasshauer D, Munro S (2012) Untangling the evolution of Rab G proteins: implications of a comprehensive genomic analysis. BMC Biol 10:71. doi:10.1186/1741-7007-10-71, 1741-7007-10-71 [pii]

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lachmann J, Barr FA, Ungermann C (2012) The Msb3/Gyp3 GAP controls the activity of the Rab GTPases Vps21 and Ypt7 at endosomes and vacuoles. Mol Biol Cell 23(13):2516–2526. doi:10.1091/mbc.E11-12-1030

    PubMed  CAS  PubMed Central  Google Scholar 

  • Langemeyer L, Bastos RN, Cai Y, Itzen A, Reinisch K, Barr FA (2014) Diversity and plasticity in Rab GTPase nucleotide release mechanism has consequences for Rab activation and inactivation. eLife 3:e01623

    PubMed  PubMed Central  Google Scholar 

  • Lanzetti L, Rybin V, Malabarba MG, Christoforidis S, Scita G, Zerial M, Di Fiore PP (2000) The Eps8 protein coordinates EGF receptor signalling through Rac and trafficking through Rab5. Nature 408(6810):374–377. doi:10.1038/35042605

    PubMed  CAS  Google Scholar 

  • Lee MT, Mishra A, Lambright DG (2009) Structural mechanisms for regulation of membrane traffic by rab GTPases. Traffic 10(10):1377–1389

    PubMed  CAS  Google Scholar 

  • Lerner DW, McCoy D, Isabella AJ, Mahowald AP, Gerlach GF, Chaudhry TA, Horne-Badovinac S (2013) A Rab10-dependent mechanism for polarized basement membrane secretion during organ morphogenesis. Dev Cell 24(2):159–168. doi:10.1016/j.devcel.2012.12.005

    PubMed  CAS  PubMed Central  Google Scholar 

  • Levine TP, Daniels RD, Wong LH, Gatta AT, Gerondopoulos A, Barr FA (2013) Discovery of new Longin and Roadblock domains that form platforms for small GTPases in Ragulator and TRAPP-II. Small GTPases 4(2):62–69

    PubMed  PubMed Central  Google Scholar 

  • Levivier E, Goud B, Souchet M, Calmels TP, Mornon JP, Callebaut I (2001) uDENN, DENN, and dDENN: indissociable domains in Rab and MAP kinases signaling pathways. Biochem Biophys Res Commun 287(3):688–695. doi:10.1006/bbrc.2001.5652

    PubMed  CAS  Google Scholar 

  • Li W, Zou W, Zhao D, Yan J, Zhu Z, Lu J, Wang X (2009) C. elegans Rab GTPase activating protein TBC-2 promotes cell corpse degradation by regulating the small GTPase RAB-5. Development 136(14):2445–2455. doi:10.1242/dev.035949

    PubMed  CAS  Google Scholar 

  • Liegel RP, Handley MT, Ronchetti A, Brown S, Langemeyer L, Linford A, Chang B, Morris-Rosendahl DJ, Carpanini S, Posmyk R, Harthill V, Sheridan E, Abdel-Salam GM, Terhal PA, Faravelli F, Accorsi P, Giordano L, Pinelli L, Hartmann B, Ebert AD, Barr FA, Aligianis IA, Sidjanin DJ (2013) Loss-of-function mutations in TBC1D20 cause cataracts and male infertility in blind sterile mice and Warburg micro syndrome in humans. Am J Hum Genet. doi:10.1016/j.ajhg.2013.10.011

    PubMed  PubMed Central  Google Scholar 

  • Linford A, Yoshimura S, Nunes Bastos R, Langemeyer L, Gerondopoulos A, Rigden DJ, Barr FA (2012) Rab14 and its exchange factor FAM116 link endocytic recycling and adherens junction stability in migrating cells. Dev Cell 22(5):952–966. doi:10.1016/j.devcel.2012.04.010

    PubMed  CAS  Google Scholar 

  • Longatti A, Lamb CA, Razi M, Yoshimura S, Barr FA, Tooze SA (2012) TBC1D14 regulates autophagosome formation via Rab11- and ULK1-positive recycling endosomes. J Cell Biol 197(5):659–675. doi:10.1083/jcb.201111079

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lynch-Day MA, Bhandari D, Menon S, Huang J, Cai H, Bartholomew CR, Brumell JH, Ferro-Novick S, Klionsky DJ (2010) Trs85 directs a Ypt1 GEF, TRAPPIII, to the phagophore to promote autophagy. Proc Natl Acad Sci U S A 107(17):7811–7816. doi:10.1073/pnas.1000063107

    PubMed  CAS  PubMed Central  Google Scholar 

  • Machner MP, Isberg RR (2006) Targeting of host Rab GTPase function by the intravacuolar pathogen Legionella pneumophila. Dev Cell 11(1):47–56

    PubMed  CAS  Google Scholar 

  • Machner MP, Isberg RR (2007) A bifunctional bacterial protein links GDI displacement to Rab1 activation. Science 318(5852):974–977

    PubMed  CAS  Google Scholar 

  • Marat AL, McPherson PS (2010) The connecdenn family, Rab35 guanine nucleotide exchange factors interfacing with the clathrin machinery. J Biol Chem 285(14):10627–10637. doi:10.1074/jbc.M109.050930

    PubMed  CAS  PubMed Central  Google Scholar 

  • Marat AL, Dokainish H, McPherson PS (2011) DENN domain proteins: regulators of Rab GTPases. J Biol Chem 286(16):13791–13800. doi:10.1074/jbc.R110.217067

    PubMed  CAS  PubMed Central  Google Scholar 

  • Martin S, Driessen K, Nixon SJ, Zerial M, Parton RG (2005) Regulated localization of Rab18 to lipid droplets: effects of lipolytic stimulation and inhibition of lipid droplet catabolism. J Biol Chem 280(51):42325–42335. doi:10.1074/jbc.M506651200, M506651200 [pii]

    PubMed  CAS  Google Scholar 

  • Martina JA, Moriyama K, Bonifacino JS (2003) BLOC-3, a protein complex containing the Hermansky-Pudlak syndrome gene products HPS1 and HPS4. J Biol Chem 278(31):29376–29384. doi:10.1074/jbc.M301294200

    PubMed  CAS  Google Scholar 

  • Martinez O, Schmidt A, Salamero J, Hoflack B, Roa M, Goud B (1994) The small GTP-binding protein rab6 functions in intra-Golgi transport. J Cell Biol 127(6 Pt 1):1575–1588

    PubMed  CAS  Google Scholar 

  • Miertzschke M, Koerner C, Vetter IR, Keilberg D, Hot E, Leonardy S, Sogaard-Andersen L, Wittinghofer A (2011) Structural analysis of the Ras-like G protein MglA and its cognate GAP MglB and implications for bacterial polarity. EMBO J 30(20):4185–4197. doi:10.1038/emboj.2011.291, emboj2011291 [pii]

    PubMed  CAS  PubMed Central  Google Scholar 

  • Miinea CP, Sano H, Kane S, Sano E, Fukuda M, Peranen J, Lane WS, Lienhard GE (2005) AS160, the Akt substrate regulating GLUT4 translocation, has a functional Rab GTPase-activating protein domain. Biochem J 391(Pt 1):87–93

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mizuno-Yamasaki E, Rivera-Molina F, Novick P (2012) GTPase networks in membrane traffic. Annu Rev Biochem 81:637–659. doi:10.1146/annurev-biochem-052810-093700

    PubMed  CAS  PubMed Central  Google Scholar 

  • Montpetit B, Conibear E (2009) Identification of the novel TRAPP associated protein Tca17. Traffic 10(6):713–723. doi:10.1111/j.1600-0854.2009.00895.x

    PubMed  CAS  Google Scholar 

  • Murata T, Delprato A, Ingmundson A, Toomre DK, Lambright DG, Roy CR (2006) The Legionella pneumophila effector protein DrrA is a Rab1 guanine nucleotide-exchange factor. Nat Cell Biol 8(9):971–977

    PubMed  CAS  Google Scholar 

  • Nazarian R, Falcon-Perez JM, Dell’Angelica EC (2003) Biogenesis of lysosome-related organelles complex 3 (BLOC-3): a complex containing the Hermansky-Pudlak syndrome (HPS) proteins HPS1 and HPS4. Proc Natl Acad Sci U S A 100(15):8770–8775. doi:10.1073/pnas.1532040100

    PubMed  CAS  PubMed Central  Google Scholar 

  • Neuwald AF (1997) A shared domain between a spindle assembly checkpoint protein and Ypt/Rab-specific GTPase-activators. Trends Biochem Sci 22(7):243–244

    PubMed  CAS  Google Scholar 

  • Nickerson DP, Russell MR, Lo SY, Chapin HC, Milnes JM, Merz AJ (2012) Termination of isoform-selective Vps21/Rab5 signaling at endolysosomal organelles by Msb3/Gyp3. Traffic 13(10):1411–1428. doi:10.1111/j.1600-0854.2012.01390.x

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nordmann M, Cabrera M, Perz A, Brocker C, Ostrowicz C, Engelbrecht-Vandre S, Ungermann C (2010) The Mon1-Ccz1 complex is the GEF of the late endosomal Rab7 homolog Ypt7. Curr Biol 20(18):1654–1659. doi:10.1016/j.cub.2010.08.002

    PubMed  CAS  Google Scholar 

  • Nottingham RM, Ganley IG, Barr FA, Lambright DG, Pfeffer SR (2011) RUTBC1 protein, a Rab9A effector that activates GTP hydrolysis by Rab32 and Rab33B proteins. J Biol Chem 286(38):33213–33222. doi:10.1074/jbc.M111.261115, M111.261115 [pii]

    PubMed  CAS  PubMed Central  Google Scholar 

  • Novick P, Field C, Schekman R (1980) Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 21(1):205–215. doi:10.1016/0092-8674(80)90128-2, 0092-8674(80)90128-2 [pii]

    PubMed  CAS  Google Scholar 

  • Oiso N, Riddle SR, Serikawa T, Kuramoto T, Spritz RA (2004) The rat Ruby ( R) locus is Rab38: identical mutations in Fawn-hooded and Tester-Moriyama rats derived from an ancestral Long Evans rat sub-strain. Mamm Genome 15(4):307–314. doi:10.1007/s00335-004-2337-9

    PubMed  CAS  Google Scholar 

  • Ozeki S, Cheng J, Tauchi-Sato K, Hatano N, Taniguchi H, Fujimoto T (2005) Rab18 localizes to lipid droplets and induces their close apposition to the endoplasmic reticulum-derived membrane. J Cell Sci 118(Pt 12):2601–2611. doi:10.1242/jcs.02401

    PubMed  CAS  Google Scholar 

  • Palamidessi A, Frittoli E, Ducano N, Offenhauser N, Sigismund S, Kajiho H, Parazzoli D, Oldani A, Gobbi M, Serini G, Di Fiore PP, Scita G, Lanzetti L (2013) The GTPase-activating protein RN-tre controls focal adhesion turnover and cell migration. Curr Biol 23(23):2355–2364. doi:10.1016/j.cub.2013.09.060

    PubMed  CAS  Google Scholar 

  • Pan X, Eathiraj S, Munson M, Lambright DG (2006) TBC-domain GAPs for Rab GTPases accelerate GTP hydrolysis by a dual-finger mechanism. Nature 442(7100):303–306. doi:10.1038/nature04847, nature04847 [pii]

    PubMed  CAS  Google Scholar 

  • Patino-Lopez G, Dong X, Ben-Aissa K, Bernot KM, Itoh T, Fukuda M, Kruhlak MJ, Samelson LE, Shaw S (2008) Rab35 and its GAP EPI64C in T cells regulate receptor recycling and immunological synapse formation. J Biol Chem 283(26):18323–18330. doi:10.1074/jbc.M800056200, M800056200 [pii]

    PubMed  CAS  PubMed Central  Google Scholar 

  • Peck GR, Chavez JA, Roach WG, Budnik BA, Lane WS, Karlsson HK, Zierath JR, Lienhard GE (2009) Insulin-stimulated phosphorylation of the Rab GTPase-activating protein TBC1D1 regulates GLUT4 translocation. J Biol Chem 284(44):30016–30023. doi:10.1074/jbc.M109.035568

    PubMed  CAS  PubMed Central  Google Scholar 

  • Peter M, Chavrier P, Nigg EA, Zerial M (1992) Isoprenylation of rab proteins on structurally distinct cysteine motifs. J Cell Sci 102(Pt 4):857–865

    PubMed  CAS  Google Scholar 

  • Pfeffer S, Aivazian D (2004) Targeting Rab GTPases to distinct membrane compartments. Nat Rev Mol Cell Biol 5(11):886–896. doi:10.1038/nrm1500, nrm1500 [pii]

    PubMed  CAS  Google Scholar 

  • Plutner H, Cox AD, Pind S, Khosravi-Far R, Bourne JR, Schwaninger R, Der CJ, Balch WE (1991) Rab1b regulates vesicular transport between the endoplasmic reticulum and successive Golgi compartments. J Cell Biol 115(1):31–43

    PubMed  CAS  Google Scholar 

  • Popovic D, Akutsu M, Novak I, Harper JW, Behrends C, Dikic I (2012) Rab GTPase-activating proteins in autophagy: regulation of endocytic and autophagy pathways by direct binding to human ATG8 modifiers. Mol Cell Biol 32(9):1733–1744. doi:10.1128/MCB.06717-11

    PubMed  CAS  PubMed Central  Google Scholar 

  • Poteryaev D, Datta S, Ackema K, Zerial M, Spang A (2010) Identification of the switch in early-to-late endosome transition. Cell 141(3):497–508. doi:10.1016/j.cell.2010.03.011

    PubMed  CAS  Google Scholar 

  • Prigent M, Boy-Marcotte E, Chesneau L, Gibson K, Dupre-Crochet S, Tisserand H, Verbavatz JM, Cuif MH (2011) The RabGAP proteins Gyp5p and Gyl1p recruit the BAR domain protein Rvs167p for polarized exocytosis. Traffic 12(8):1084–1097. doi:10.1111/j.1600-0854.2011.01218.x

    PubMed  CAS  Google Scholar 

  • Pusapati GV, Luchetti G, Pfeffer SR (2012) Ric1-Rgp1 complex is a guanine nucleotide exchange factor for the late Golgi Rab6A GTPase and an effector of the medial Golgi Rab33B GTPase. J Biol Chem 287(50):42129–42137. doi:10.1074/jbc.M112.414565, M112.414565 [pii]

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rak A, Pylypenko O, Durek T, Watzke A, Kushnir S, Brunsveld L, Waldmann H, Goody RS, Alexandrov K (2003) Structure of Rab GDP-dissociation inhibitor in complex with prenylated YPT1 GTPase. Science 302(5645):646–650. doi:10.1126/science.1087761, 302/5645/646 [pii]

    PubMed  CAS  Google Scholar 

  • Rehman AU, Santos-Cortez RL, Morell RJ, Drummond MC, Ito T, Lee K, Khan AA, Basra MA, Wasif N, Ayub M, Ali RA, Raza SI, University of Washington Center for Mendelian Genomics, Nickerson DA, Shendure J, Bamshad M, Riazuddin S, Billington N, Khan SN, Friedman PL, Griffith AJ, Ahmad W, Riazuddin S, Leal SM, Friedman TB (2014) Mutations in TBC1D24, a Gene Associated With Epilepsy, Also Cause Nonsyndromic Deafness DFNB86. Am J Hum Genet 94(1):144–152. doi:10.1016/j.ajhg.2013.12.004

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sacher M, Barrowman J, Wang W, Horecka J, Zhang Y, Pypaert M, Ferro-Novick S (2001) TRAPP I implicated in the specificity of tethering in ER-to-Golgi transport. Mol Cell 7(2):433–442

    PubMed  CAS  Google Scholar 

  • Salminen A, Novick PJ (1987) A ras-like protein is required for a post-Golgi event in yeast secretion. Cell 49(4):527–538. doi:10.1016/0092-8674(87)90455-7, 0092-8674(87)90455-7 [pii]

    PubMed  CAS  Google Scholar 

  • Sato M, Sato K, Fonarev P, Huang CJ, Liou W, Grant BD (2005) Caenorhabditis elegans RME-6 is a novel regulator of RAB-5 at the clathrin-coated pit. Nat Cell Biol 7(6):559–569. doi:10.1038/ncb1261, ncb1261 [pii]

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sato Y, Fukai S, Ishitani R, Nureki O (2007a) Crystal structure of the Sec4p.Sec2p complex in the nucleotide exchanging intermediate state. Proc Natl Acad Sci U S A 104(20):8305–8310. doi:10.1073/pnas.0701550104

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sato Y, Shirakawa R, Horiuchi H, Dohmae N, Fukai S, Nureki O (2007b) Asymmetric coiled-coil structure with Guanine nucleotide exchange activity. Structure 15(2):245–252. doi:10.1016/j.str.2007.01.003

    PubMed  CAS  Google Scholar 

  • Sato M, Sato K, Liou W, Pant S, Harada A, Grant BD (2008) Regulation of endocytic recycling by C. elegans Rab35 and its regulator RME-4, a coated-pit protein. EMBO J 27(8):1183–1196. doi:10.1038/emboj.2008.54

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schoebel S, Oesterlin LK, Blankenfeldt W, Goody RS, Itzen A (2009) RabGDI displacement by DrrA from Legionella is a consequence of its guanine nucleotide exchange activity. Mol Cell 36(6):1060–1072. doi:10.1016/j.molcel.2009.11.014, S1097-2765(09)00828-4 [pii]

    PubMed  CAS  Google Scholar 

  • Schottenfeld-Roames J, Ghabrial AS (2012) Whacked and Rab35 polarize dynein-motor-complex-dependent seamless tube growth. Nat Cell Biol 14(4):386–393. doi:10.1038/ncb2454, ncb2454 [pii]

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schuck S, Gerl MJ, Ang A, Manninen A, Keller P, Mellman I, Simons K (2007) Rab10 is involved in basolateral transport in polarized Madin-Darby canine kidney cells. Traffic 8(1):47–60. doi:10.1111/j.1600-0854.2006.00506.x

    PubMed  CAS  Google Scholar 

  • Schwaninger R, Plutner H, Bokoch GM, Balch WE (1992) Multiple GTP-binding proteins regulate vesicular transport from the ER to Golgi membranes. J Cell Biol 119(5):1077–1096

    PubMed  CAS  Google Scholar 

  • Seaman MN, Harbour ME, Tattersall D, Read E, Bright N (2009) Membrane recruitment of the cargo-selective retromer subcomplex is catalysed by the small GTPase Rab7 and inhibited by the Rab-GAP TBC1D5. J Cell Sci 122(Pt 14):2371–2382. doi:10.1242/jcs.048686

    PubMed  CAS  PubMed Central  Google Scholar 

  • Segev N, Mulholland J, Botstein D (1988) The yeast GTP-binding YPT1 protein and a mammalian counterpart are associated with the secretion machinery. Cell 52(6):915–924. doi:10.1016/0092-8674(88)90433-3, 0092-8674(88)90433-3 [pii]

    PubMed  CAS  Google Scholar 

  • Semerdjieva S, Shortt B, Maxwell E, Singh S, Fonarev P, Hansen J, Schiavo G, Grant BD, Smythe E (2008) Coordinated regulation of AP2 uncoating from clathrin-coated vesicles by rab5 and hRME-6. J Cell Biol 183(3):499–511. doi:10.1083/jcb.200806016

    PubMed  CAS  PubMed Central  Google Scholar 

  • Siniossoglou S, Peak-Chew SY, Pelham HR (2000) Ric1p and Rgp1p form a complex that catalyses nucleotide exchange on Ypt6p. EMBO J 19(18):4885–4894. doi:10.1093/emboj/19.18.4885

    PubMed  CAS  PubMed Central  Google Scholar 

  • Soldati T, Riederer MA, Pfeffer SR (1993) Rab GDI: a solubilizing and recycling factor for rab9 protein. Mol Biol Cell 4(4):425–434

    PubMed  CAS  PubMed Central  Google Scholar 

  • Strom M, Vollmer P, Tan TJ, Gallwitz D (1993) A yeast GTPase-activating protein that interacts specifically with a member of the Ypt/Rab family. Nature 361(6414):736–739

    PubMed  CAS  Google Scholar 

  • Stroupe C, Brunger AT (2000) Crystal structures of a Rab protein in its inactive and active conformations. J Mol Biol 304(4):585–598. doi:10.1006/jmbi.2000.4236

    PubMed  CAS  Google Scholar 

  • Suh HY, Lee DW, Lee KH, Ku B, Choi SJ, Woo JS, Kim YG, Oh BH (2009) Structural insights into the dual nucleotide exchange and GDI displacement activity of SidM/DrrA. EMBO J 29(2):496–504

    PubMed  PubMed Central  Google Scholar 

  • Suh HY, Lee DW, Lee KH, Ku B, Choi SJ, Woo JS, Kim YG, Oh BH (2010) Structural insights into the dual nucleotide exchange and GDI displacement activity of SidM/DrrA. EMBO J 29(2):496–504. doi:10.1038/emboj.2009.347

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sun Z, Anderl F, Frohlich K, Zhao L, Hanke S, Brugger B, Wieland F, Bethune J (2007) Multiple and stepwise interactions between coatomer and ADP-ribosylation factor-1 (Arf1)-GTP. Traffic 8(5):582–593. doi:10.1111/j.1600-0854.2007.00554.x, TRA554 [pii]

    PubMed  CAS  Google Scholar 

  • Tan D, Cai Y, Wang J, Zhang J, Menon S, Chou HT, Ferro-Novick S, Reinisch KM, Walz T (2013) The EM structure of the TRAPPIII complex leads to the identification of a requirement for COPII vesicles on the macroautophagy pathway. Proc Natl Acad Sci U S A 110(48):19432–19437. doi:10.1073/pnas.1316356110

    PubMed  CAS  PubMed Central  Google Scholar 

  • Taussig D, Lipatova Z, Segev N (2013) Trs20 is required for TRAPP III complex assembly at the PAS and its function in autophagy. Traffic. doi:10.1111/tra.12145

    PubMed  PubMed Central  Google Scholar 

  • Tisdale EJ, Bourne JR, Khosravi-Far R, Der CJ, Balch WE (1992) GTP-binding mutants of rab1 and rab2 are potent inhibitors of vesicular transport from the endoplasmic reticulum to the Golgi complex. J Cell Biol 119(4):749–761

    PubMed  CAS  Google Scholar 

  • Uejima T, Ihara K, Goh T, Ito E, Sunada M, Ueda T, Nakano A, Wakatsuki S (2010) GDP-bound and nucleotide-free intermediates of the guanine nucleotide exchange in the Rab5.Vps9 system. J Biol Chem 285(47):36689–36697. doi:10.1074/jbc.M110.152132

    PubMed  CAS  PubMed Central  Google Scholar 

  • Uytterhoeven V, Kuenen S, Kasprowicz J, Miskiewicz K, Verstreken P (2011) Loss of skywalker reveals synaptic endosomes as sorting stations for synaptic vesicle proteins. Cell 145(1):117–132. doi:10.1016/j.cell.2011.02.039, S0092-8674(11)00191-7 [pii]

    PubMed  CAS  Google Scholar 

  • Vaibhava V, Nagabhushana A, Chalasani ML, Sudhakar C, Kumari A, Swarup G (2012) Optineurin mediates a negative regulation of Rab8 by the GTPase-activating protein TBC1D17. J Cell Sci 125(Pt 21):5026–5039. doi:10.1242/jcs.102327

    PubMed  CAS  Google Scholar 

  • Vollmer P, Will E, Scheglmann D, Strom M, Gallwitz D (1999) Primary structure and biochemical characterization of yeast GTPase-activating proteins with substrate preference for the transport GTPase Ypt7p. Eur J Biochem 260(1):284–290

    PubMed  CAS  Google Scholar 

  • Wada M, Nakanishi H, Satoh A, Hirano H, Obaishi H, Matsuura Y, Takai Y (1997) Isolation and characterization of a GDP/GTP exchange protein specific for the Rab3 subfamily small G proteins. J Biol Chem 272(7):3875–3878

    PubMed  CAS  Google Scholar 

  • Walch-Solimena C, Collins RN, Novick PJ (1997) Sec2p mediates nucleotide exchange on Sec4p and is involved in polarized delivery of post-Golgi vesicles. J Cell Biol 137(7):1495–1509

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wang W, Sacher M, Ferro-Novick S (2000) TRAPP stimulates guanine nucleotide exchange on Ypt1p. J Cell Biol 151(2):289–296

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wang CW, Stromhaug PE, Kauffman EJ, Weisman LS, Klionsky DJ (2003) Yeast homotypic vacuole fusion requires the Ccz1-Mon1 complex during the tethering/docking stage. J Cell Biol 163(5):973–985. doi:10.1083/jcb.200308071

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wasmeier C, Romao M, Plowright L, Bennett DC, Raposo G, Seabra MC (2006) Rab38 and Rab32 control post-Golgi trafficking of melanogenic enzymes. J Cell Biol 175(2):271–281. doi:10.1083/jcb.200606050

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wendler F, Gillingham AK, Sinka R, Rosa-Ferreira C, Gordon DE, Franch-Marro X, Peden AA, Vincent JP, Munro S (2010) A genome-wide RNA interference screen identifies two novel components of the metazoan secretory pathway. EMBO J 29(2):304–314. doi:10.1038/emboj.2009.350

    PubMed  CAS  PubMed Central  Google Scholar 

  • White J, Johannes L, Mallard F, Girod A, Grill S, Reinsch S, Keller P, Tzschaschel B, Echard A, Goud B, Stelzer EH (1999) Rab6 coordinates a novel Golgi to ER retrograde transport pathway in live cells. J Cell Biol 147(4):743–760

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wittinghofer A, Vetter IR (2011) Structure-function relationships of the G domain, a canonical switch motif. Annu Rev Biochem 80:943–971. doi:10.1146/annurev-biochem-062708-134043

    PubMed  CAS  Google Scholar 

  • Wu YW, Oesterlin LK, Tan KT, Waldmann H, Alexandrov K, Goody RS (2010) Membrane targeting mechanism of Rab GTPases elucidated by semisynthetic protein probes. Nat Chem Biol 6(7):534–540. doi:10.1038/nchembio.386, nchembio.386 [pii]

    PubMed  CAS  Google Scholar 

  • Wu X, Bradley MJ, Cai Y, Kummel D, De La Cruz EM, Barr FA, Reinisch KM (2011) Insights regarding guanine nucleotide exchange from the structure of a DENN-domain protein complexed with its Rab GTPase substrate. Proc Natl Acad Sci U S A 108(46):18672–18677. doi:10.1073/pnas.1110415108

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yoshimura S, Egerer J, Fuchs E, Haas AK, Barr FA (2007) Functional dissection of Rab GTPases involved in primary cilium formation. J Cell Biol 178(3):363–369. doi:10.1083/jcb.200703047, jcb.200703047 [pii]

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yoshimura S, Gerondopoulos A, Linford A, Rigden DJ, Barr FA (2010) Family-wide characterization of the DENN domain Rab GDP-GTP exchange factors. J Cell Biol 191(2):367–381. doi:10.1083/jcb.201008051

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zerial M, McBride H (2001) Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2(2):107–117. doi:10.1038/35052055

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis A. Barr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Barr, F.A. (2014). Rab GEFs and GAPs: The Enigma Variations. In: Wittinghofer, A. (eds) Ras Superfamily Small G Proteins: Biology and Mechanisms 2. Springer, Cham. https://doi.org/10.1007/978-3-319-07761-1_5

Download citation

Publish with us

Policies and ethics