Skip to main content

Studying Dark Matter Through the Lens of the Reionisation

  • Chapter
  • First Online:
The Large Scale Structures

Part of the book series: Springer Theses ((Springer Theses))

  • 546 Accesses

Abstract

Stars are not eternal: they are known to go through a series of phases, from their births in gaseous nebulae to their often cataclysmic ends and final transformation into stellar remnants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This ratio is equal to \(Y_P/(K(1-Y_P))\), with \(K\simeq 3.9715\) the ratio of the helium-4 atomic mass to the hydrogen mass, and \(Y_P\) the primordial helium abundance (the latest value of this parameter was determined by [30], to be \(0.24771\pm 0.00014\)) which yields \(f_\mathrm{He}\sim 0.08\).

  2. 2.

    Of course, this simple model would have two less parameters (the DM ones), i.e. two less degrees of freedom that will have to be accounted for when comparing it to the \(\chi ^2\) of the DM models.

References

  1. G.D. Becker, J.S. Bolton, M.G. Haehnelt, W.L.W. Sargent, Detection of extended He II reionization in the temperature evolution of the intergalactic medium. Mon. Not. R. Astron. Soc. 410, 1096–1112 (2011)

    Article  ADS  Google Scholar 

  2. C.L. Bennett et al., Nine-year Wilkinson microwave anisotropy probe (WMAP) observations: final maps and results. Astrophys. J. Suppl. Ser. 208, 20 (2013)

    Article  ADS  Google Scholar 

  3. P.L. Biermann, H.J. de Vega, N.G. Sanchez, Towards the Chalonge Meudon workshop 2013. Highlights and conclusions of the Chalonge Meudon workshop 2012: warm dark matter galaxy formation in agreement with observations. ArXiv:1305.7452 (2013)

  4. C. Bœhm, P. Fayet, R. Schaeffer, Constraining dark matter candidates from structure formation. Phys. Lett. B 518, 8–14 (2001)

    Article  ADS  Google Scholar 

  5. J.S. Bolton, S.P. Oh, S.R. Furlanetto, Photoheating and the fate of hard photons during the reionization of HeII by quasars. Mon. Not. R. Astron. Soc. 395, 736–752 (2009)

    Article  ADS  Google Scholar 

  6. J.S. Bolton et al., Improved measurements of the intergalactic medium temperature around quasars: possible evidence for the initial stages of He II reionization at z \(\sim \) 6. Mon. Not. R. Astron. Soc. 419, 2880–2892 (2012)

    Article  ADS  Google Scholar 

  7. X. Chen, M. Kamionkowski, Particle decays during the cosmic dark ages. Phys. Rev. D 70(4), 043502 (2004)

    Article  ADS  Google Scholar 

  8. T.R. Choudhury, A. Ferrara, Updating reionization scenarios after recent data. Mon. Not. R. Astron. Soc. 371, L55–L59 (2006)

    Article  ADS  Google Scholar 

  9. L. Chuzhoy, Impact of dark matter annihilation on the high-redshift intergalactic medium. Astronphys. J. 679, L65–L68 (2008)

    Article  ADS  Google Scholar 

  10. C. Evoli, M. Valdés, A. Ferrara, N. Yoshida, Energy deposition by weakly interacting massive particles: a comprehensive study. Mon. Not. R. Astron. Soc. 422, 420–433 (2012)

    Article  ADS  Google Scholar 

  11. X. Fan, et al, A survey of z>5.7 quasars in the sloan digital sky survey. II. Discovery of three additional quasars at z>6. Astron. J. 125, 1649–1659 (2003)

    Google Scholar 

  12. X. Fan et al., A survey of z>5.7 quasars in the sloan digital sky survey. IV. Discovery of seven additional quasars. Astron. J. 131, 1203–1209 (2006)

    Google Scholar 

  13. S.R. Furlanetto, S.P. Oh, The history and morphology of helium reionization. Astrophys. J. 681, 1–17 (2008)

    Article  ADS  Google Scholar 

  14. A. Garzilli, J.S. Bolton, T.-S. Kim, S. Leach, M. Viel, The intergalactic medium thermal history at redshift z = 1.7-3.2 from the Ly\(\alpha \) forest: a comparison of measurements using wavelets and the flux distribution. Mon. Not. R. Astron. Soc. 424, 1723–1736 (2012)

    Article  ADS  Google Scholar 

  15. J.E. Gunn, B.A. Peterson, On the density of neutral hydrogen in intergalactic space. Astrophys. J. 142, 1633–1641 (1965)

    Article  ADS  Google Scholar 

  16. M.G. Haehnelt, M. Steinmetz, Probing the thermal history of the intergalactic medium with Lyalpha absorption lines. Mon. Not. R. Astron. Soc. 298, L21–L24 (1998)

    Article  ADS  Google Scholar 

  17. L. Hernquist, N. Katz, D.H. Weinberg, J. Miralda-Escudé, The Lyman-Alpha forest in the cold dark matter model. Astrophys. J. 457, L51 (1996)

    ADS  Google Scholar 

  18. D. Hooper, L.-T. Wang, Possible evidence for axino dark matter in the galactic bulge. Phys. Rev. D 70(6), 063506 (2004)

    Article  ADS  Google Scholar 

  19. W.T. Hu, Wandering in the background: a cosmic microwave background explorer. Ph.D. thesis (University Of California, Berkeley, 1995)

    Google Scholar 

  20. L. Hui, Z. Haiman, The thermal memory of reionization history. Astrophys. J. 596, 9–18 (2003)

    Article  ADS  Google Scholar 

  21. M. Kaplinghat et al., Probing the reionization history of the universe using the cosmic microwave background polarization. Astrophys. J. 583, 24–32 (2003)

    Article  ADS  Google Scholar 

  22. A. Lewis, J. Weller, R. Battye, The cosmic microwave background and the ionization history of the Universe. Mon. Not. R. Astron. Soc. 373, 561–570 (2006)

    Article  ADS  Google Scholar 

  23. P. Madau, F. Haardt, and M.J. Rees, Radiative transfer in a clumpy universe. III. The nature of cosmological ionizing sources. Astrophys. J. 514, 648–659 (1999)

    Google Scholar 

  24. M. Mapelli, A. Ferrara, E. Pierpaoli, Impact of dark matter decays and annihilations on reionization. Mon. Not. R. Astron. Soc. 369, 1719–1724 (2006)

    Article  ADS  Google Scholar 

  25. J.C. Mather et al., Measurement of the cosmic microwave background spectrum by the COBE FIRAS instrument. Astrophys. J. 420, 439–444 (1994)

    Article  ADS  Google Scholar 

  26. M. McQuinn et al., He II reionization and its effect on the intergalactic medium. Astrophys. J. 694, 842–866 (2009)

    Article  ADS  Google Scholar 

  27. C. Muñoz, Indirect dark matter searches and models. Nucl. Instrum. Methods Phys. Res. A 692, 13–19 (2012)

    Article  ADS  Google Scholar 

  28. M.S. Peeples, D.H. Weinberg, R. Davé, M.A. Fardal, N. Katz, Pressure support versus thermal broadening in the Lyman \(\alpha \) forest - I. Effects of the equation of state on longitudinal structure. Mon. Not. R. Astron. Soc. 404, 1281–1294 (2010)

    ADS  Google Scholar 

  29. Planck Collaboration. Planck 2013 results. I. Overview of products and scientific results (2013a). ArXiv:1303.5062

  30. Planck Collaboration. Planck 2013 results. XVI. Cosmological, parameters (2013b) ArXiv:1303.5076

  31. T.A. Porter, R.P. Johnson, P.W. Graham, Dark matter searches with astroparticle data. Ann. Rev. Astron. Astrophys. 49, 155–194 (2011)

    Article  ADS  Google Scholar 

  32. M. Ricotti, N.Y. Gnedin, J.M. Shull, The evolution of the effective equation of state of the intergalactic medium. Astrophys. J. 534, 41–56 (2000)

    Article  ADS  Google Scholar 

  33. J. Schaye, T. Theuns, M. Rauch, G. Efstathiou, W.L.W. Sargent, The thermal history of the intergalactic medium. Mon. Not. R. Astron. Soc. 318, 817–826 (2000)

    Article  ADS  Google Scholar 

  34. S. Seager, D.D. Sasselov, D. Scott, A new calculation of the recombination epoch. Astrophys. J. 523, L1–L5 (1999)

    Article  ADS  Google Scholar 

  35. J.M. Shull, M.E. van Steenberg, X-ray secondary heating and ionization in quasar emission-line clouds. Astrophys. J. 298, 268–274 (1985)

    Article  ADS  Google Scholar 

  36. L.E. Strigari, Galactic searches for dark matter. Phys. Rep. 531, 1–88 (2013)

    Article  ADS  Google Scholar 

  37. N. Sugiyama, Cosmic background anisotropies in cold dark matter cosmology. Astrophys. J. Suppl. 100, 281 (1995)

    Article  ADS  Google Scholar 

  38. T. Theuns, J. Schaye, M.G. Haehnelt, Broadening of QSO Ly\(\alpha \) forest absorbers. Mon. Not. R. Astron. Soc. 315, 600–610 (2000)

    Article  ADS  Google Scholar 

  39. P. Valageas, J. Silk, The reheating and reionization history of the universe. Astron. Astrophys. 347, 1–20 (1999)

    ADS  Google Scholar 

  40. M. Zaldarriaga, Polarization of the microwave background in reionized models. Phys. Rev. D 55, 1822–1829 (1997)

    Article  ADS  Google Scholar 

  41. M. Zaldarriaga, L. Hui, M. Tegmark, Constraints from the Ly\(\alpha \) forest power spectrum. Astrophys. J. 557, 519–526 (2001)

    Article  ADS  Google Scholar 

  42. S. Zaroubi, The epoch of reionization. In T. Wiklind, B. Mobasher, V. Bromm (eds) Astrophysics and Space Science Library, vol 396, p 45 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Ilić .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ilić, S. (2014). Studying Dark Matter Through the Lens of the Reionisation. In: The Large Scale Structures. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-07746-8_5

Download citation

Publish with us

Policies and ethics