Advertisement

Laser-Induced Spin Dynamics in Ferromagnetic (In,Mn)As at Magnetic Fields up to 7 T

  • R. R. SubkhangulovEmail author
  • H. Munekata
  • Th. Rasing
  • A. V. Kimel
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 159)

Abstract

Laser-induced spin dynamics in (In,Mn)As is studied in magnetic fields up to 7 T. It is shown that a laser pulse can effectively excite homogenous spin precession in this compound at the frequency of the ferromagnetic resonance. Laser excitation of this resonance appears to be very ineffective if the applied magnetic field is below 1.5 T. Our analysis shows that the damping of the laser-induced spin precession is a function of magnetic field and reaches very high values below 1.5 T.

Keywords

Magnetic Field Magnetic Anisotropy Magnetic Field Dependence Spin Precession Paramagnetic Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Koshihara, A. Oiwa, M. Hirasawa, S. Katsumoto, Y. Iye, C. Urano, H. Takagi, and H. Munekata “Ferromagnetic Order Induced by Photogenerated Carriers in Magnetic III-V Semiconductor Heterostructures of (In,Mn)As/GaSb” Phys Rev Lett 78, 4617 (1997).Google Scholar
  2. 2.
    A. Oiwa, Y. Mitsumori, R. Moriya, T. Słupinski, and H. Munekata, “ Effect of Optical Spin Injection on Ferromagnetically Coupled Mn Spins in the III-V Magnetic Alloy Semiconductor (Ga,Mn)As” Phys Rev Lett 88, 137202 (2002).Google Scholar
  3. 3.
    D. M. Wang, Y. H. Ren, X. Liu, J. K. Furdyna, M. Grimsditch, and R. Merlin, “Light-induced magnetic precession in (Ga,Mn)As slabs: Hybrid standing-wave Damon-Eshbach modes” Phys Rev B 75, 233308 (2007).Google Scholar
  4. 4.
    P. Nemec et al. “The essential role of carefully optimized synthesis for elucidating intrinsic material properties of (Ga,Mn)As” Nat. Commun. 4, 1422 (2013).Google Scholar
  5. 5.
    Y. Hashimoto, S. Kobayashi, and H. Munekata, “Photoinduced Precession of Magnetization in Ferromagnetic (Ga,Mn)As” Phys. Rev. Lett. 100, 067202 (2008).Google Scholar
  6. 6.
    H. Munekata, H. Ohno, S. von Molnar, Armin Segmüller, L. L. Chang, and L. Esaki, “Diluted magnetic III-V semiconductors” Phys. Rev. Lett. 63, 1849 (1989).Google Scholar
  7. 7.
    T. Schallenberg and H. Munekata, “Preparation of ferromagnetic (In,Mn)As with a high Curie temperature of 90K” Appl. Phys. Lett. 89, 042507 (2006).Google Scholar
  8. 8.
    F. Matsukuraa, H. Ohno, and T. Dietl, III-V Ferromagnetic Semiconductors (Elsevier, Amsterdam), Vol. 14, Handbook of Magnetic MaterialsGoogle Scholar
  9. 9.
    T. Jungwirth, Jairo Sinova, J. Mašek, J. Kučera, and A. H. MacDonald, “ Theory of ferromagnetic (III,Mn)V semiconductors” Rev. Mod. Phys. 78, 809 (2006).Google Scholar
  10. 10.
    J. G. Wang et al., J. Phys. Cond. Mat 18 (2006).Google Scholar
  11. 11.
    M. Sparks, Ferromagnetic-relaxation theory (McGraw-Hill, New York, 1964), McGraw-Hill advanced physics monograph series.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • R. R. Subkhangulov
    • 1
    Email author
  • H. Munekata
    • 2
  • Th. Rasing
    • 1
  • A. V. Kimel
    • 1
  1. 1.Radboud University Nijmegen, Institute for Molecules and Materials (IMM)NijmegenThe Netherlands
  2. 2.Imaging Science and Engineering Laboratory, Tokyo Institute of TechnologyYokohama, KanagawaJapan

Personalised recommendations