Ultrafast Quenching of the Exchange Interaction in a Mott-Insulator

  • Johan H. MentinkEmail author
  • Martin Eckstein
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 159)


The exchange interaction determines the ordering of microscopic spins in magnetic materials. While often considered static, here we report calculations of time-dependent nonequilibrium exchange interactions in a Mott insulator. The results suggest that free charge carriers created by (photo) excitation can cause an ultrafast quench of the exchange interaction.


Exchange Interaction Mott Insulator Antiferromagnetic Order Orbital Index Correlate Fermion System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



J.H.M. acknowledges funding from the Nederlandse Organisatie voor Wetenschappelijk onderzoek (NWO) by a Rubicon Grant.


  1. 1.
    E. Beaurepaire, J.-C. Merle, A. Daunois, J.-Y. Bigot, “Ultrafast spin dynamics in ferromagnetic Nickel” Phys. Rev. Lett. 76, 4250-4553 (1996).Google Scholar
  2. 2.
    I. Radu et al., “Transient ferromagnetic-like state mediating ultrafast reversal of antiferromagnetically coupled spins” Nature 472, 205–208 (2011).Google Scholar
  3. 3.
    A. Kirilyuk, A. Kimel, T. Rasing., “Ultrafast optical manipulation of magnetic order” Rev. Mod. Phys. 82, 2731–2784 (2010).Google Scholar
  4. 4.
    J.H. Mentink et al., “Ultrafast Spin Dynamics in Multisublattice Magnets” Phys. Rev. Lett. 108, 057202 (2012).Google Scholar
  5. 5.
    J.K. Freericks et al., “Nonequilibrium Dynamical Mean-Field Theory” Phys. Rev. Lett. 97, 266408 (2006).Google Scholar
  6. 6.
    A. Georges et al., “Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions” Rev. Mod. Phys. 68, 13–125 (1996).Google Scholar
  7. 7.
    N. Tsuji et al., “Nonthermal antiferromagnetic order and nonequilibrium criticality in the Hubbard model”, Phys. Rev. Lett. 110, 136404 (2013).Google Scholar
  8. 8.
    Werner et al., “Nonthermal symmetry-broken states in the strongly interacting Hubbard model”, Phys. Rev. B 86, 205101 (2012).Google Scholar
  9. 9.
    A. Secchi et al., “Nonequilibrium magnetic interactions in strongly correlated systems” Ann. Phys. 333, 221-271 (2013).Google Scholar
  10. 10.
    A.I. Liechtenstein et al., “Exchange interactions and spin-wave stiffness in ferromagnetic metals” J. Phys. F: Met. Phys. 14, L125-L128 (1984).Google Scholar
  11. 11.
    M.I. Katsnelson and A.I. Lichtenstein, “First-principles calculations of magnetic interactions in correlated systems” Phys. Rev. B 61, 8906-8912 (2000).Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Center for Free-Electron Laser Science (CFEL)Max Planck Institute for the Structure and Dynamics of Matter (MPSD)HamburgGermany

Personalised recommendations