Skip to main content

Nonlinear Single Compton Scattering

  • Chapter
  • First Online:
  • 521 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The lowest order of the SF-QED perturbation series is described by Furry picture Feynman diagrams with only one vertex. The only possible scattering process with only an electron in the initial state is an electron with initial momentum \(p_i^{\mu }=\left( \varepsilon _i,\varvec{p}_i\right) \) emitting a single photon with wave vector \(k_1^{\mu }=\omega _1n_1\) and thereby changing its momentum to \(p^{\mu }_f=(\varepsilon _f,\varvec{p}_f)\). The corresponding Feynman diagram is shown in Fig. 3.1

Nature uses only the longest threads to weave her patterns, so

that each small piece of her fabric reveals the organization of

the entire tapestry.

Richard P. Feynman

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Reprinted figure with permission from [20]. Copyright (2003) by the American Physical Society.

References

  1. M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory (Westview Press, Boulder, 1995)

    Google Scholar 

  2. V.I. Ritus, Quantum effects of the interaction of elementary particles with an intense electromagnetic field. J. Russ. Laser Res. 6, 497 (1985)

    Article  Google Scholar 

  3. C. Harvey, T. Heinzl, A. Ilderton, Signatures of high-intensity Compton scattering. Phys. Rev. A 79, 063407 (2009)

    Article  ADS  Google Scholar 

  4. T. Heinzl, D. Seipt, B. Kämpfer, Beam-shape effects in nonlinear Compton and Thomson scattering. Phys. Rev. A 81, 022125 (2010)

    Article  ADS  Google Scholar 

  5. A. Ilderton, Trident pair production in strong laser pulses. Phys. Rev. Lett. 106, 020404 (2011)

    Article  ADS  Google Scholar 

  6. D. Seipt, B. Kämpfer, Nonlinear Compton scattering of ultrashort intense laser pulses. Phys. Rev. A 83, 022101 (2011)

    Article  ADS  Google Scholar 

  7. E.S. Sarachik, G.T. Schappert, Classical theory of the scattering of intense laser radiation by free electrons. Phys. Rev. D 1, 2738 (1970)

    Article  ADS  Google Scholar 

  8. Y.I. Salamin, F.H.M. Faisal, Ponderomotive scattering of electrons in intense laser fields. Phys. Rev. A 55, 3678 (1997)

    Article  ADS  Google Scholar 

  9. M. Boca, V. Florescu, Nonlinear Compton scattering with a laser pulse. Phys. Rev. A 80, 053403 (2009)

    Article  ADS  Google Scholar 

  10. F. Mackenroth, A. Di Piazza, Nonlinear Compton scattering in ultrashort laser pulses. Phys. Rev. A 83, 032106 (2012)

    Article  ADS  Google Scholar 

  11. A.H. Compton, A quantum theory of the scattering of x-rays by light elements. Phys. Rev. 21, 483 (1923)

    Article  ADS  Google Scholar 

  12. F. Mandl, G. Shaw, Quantum Field Theory (Wiley, New York, 1984)

    Google Scholar 

  13. L.D. Landau, E.M. Lifschitz, Lehrbuch der Theoretischen Physik - Band 4: Quantenelektrodynamik (Akademie Verlag, Berlin, 1991)

    Google Scholar 

  14. F. Mackenroth, A. Di Piazza, C.H. Keitel, Determining the carrier-envelope phase of intense few-cycle laser pulses. Phys. Rev. Lett. 105, 063903 (2010)

    Article  ADS  Google Scholar 

  15. F.W. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark, NIST Handbook of Mathematical Functions (Cambridge University Press, New York, 2010)

    Google Scholar 

  16. F. Krausz, M. Ivanov, Attosecond physics. Rev. Mod. Phys. 81, 163 (2009)

    Article  ADS  Google Scholar 

  17. PFS, Petawatt Field Synthesizer http://www.attoworld.de/Home/ourResearch/ToolsAndTechniques/Petawatt-scaleSourceOfIrLight/index.html

  18. E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, F. Krausz, Direct measurement of light waves. Science 305, 1267 (2004)

    Article  ADS  Google Scholar 

  19. M. Kress, T. Loffler, M.D. Thomson, R. Dorner, H. Gimpel, K. Zrost, T. Ergler, R. Moshammer, U. Morgner, J. Ullrich, H.G. Roskos, Determination of the carrier-envelope phase of few-cycle laser pulses with terahertz-emission spectroscopy. Nat. Phys. 2, 327 (2006)

    Article  Google Scholar 

  20. G.G. Paulus, F. Lindner, H. Walther, A. Baltuska, E. Goulielmakis, M. Lezius, F. Krausz, Measurement of the phase of few-cycle laser pulses. Phys. Rev. Lett 91, 253004 (2003)

    Article  ADS  Google Scholar 

  21. T. Wittmann, B. Horvath, W. Helml, M.G. Schaetzel, X. Gu, A. Cavalieri, G.G. Paulus, R. Kienberger, Single-shot carrier-envelope phase measurement of few-cycle laser pulses. Nat. Phys. 5, 357 (2009)

    Article  Google Scholar 

  22. S.P.D. Mangles, C.D. Murphy, Z. Najmudin, A.G.R. Thomas, J.L. Collier, A.E. Dangor, E.J. Divall, P.S. Foster, J.G. Gallacher, C.J. Hooker, D.A. Jaroszynski, A.J. Langley, W.B. Mori, P.A. Norreys, F.S. Tsung, R. Viskup, B.R. Walton, K. Krushelnick, Monoenergetic beams of relativistic electrons from intense laser-plasma interactions. Nature 431, 535 (2004)

    Article  ADS  Google Scholar 

  23. C.G.R. Geddes, C. Toth, J. van Tilborg, E. Esarey, C.B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, W.P. Leemans, High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538 (2004)

    Article  ADS  Google Scholar 

  24. J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J.P. Rousseau, F. Burgy, V. Malka, A laser-plasma accelerator producing monoenergetic electron beams. Nature 431, 541 (2004)

    Article  ADS  Google Scholar 

  25. W.P. Leemans, B. Nagler, A.J. Gonsalves, C. Toth, K. Nakamura, C.G.R. Geddes, E. Esarey, C.B. Schroeder, S.M. Hooker, GeV electron beams from a centimetre-scale accelerator. Nat. Phys. 2, 696 (2006)

    Article  Google Scholar 

  26. C.E. Clayton, J.E. Ralph, F. Albert, R.A. Fonseca, S.H. Glenzer, C. Joshi, W. Lu, K.A. Marsh, S.F. Martins, W.B. Mori, A. Pak, F.S. Tsung, B.B. Pollock, J.S. Ross, L.O. Silva, D.H. Froula, Self-guided laser wakefield acceleration beyond 1 GeV using ionization-induced injection. Phys. Rev. Lett. 105, 105003 (2010)

    Article  ADS  Google Scholar 

  27. G.D. Tsakiris, K. Eidmann, J. Meyer-ter-Vehn, F. Krausz, Route to intense single attosecond pulses. New. J. Phys. 8, 19 (2006)

    Article  ADS  Google Scholar 

  28. V. Yanovsky, V. Chvykov, G. Kalinchenko, P. Rousseau, T. Planchon, T. Matsuoka, A. Maksimchuk, J. Nees, G. Cheriaux, G. Mourou, K. Krushelnick, Ultra-high intensity- 300-TW laser at 0.1 Hz repetition rate. Opt. Express. 16, 2109 (2008)

    Google Scholar 

  29. L.S. Brown, T.W.B. Kibble, Interaction of intense laser beams with electrons. Phys. Rev. 133, A705 (1964)

    Article  ADS  Google Scholar 

  30. A.I. Nikishov, V.I. Ritus, Quantum processes in the field of a plane electromagnetic wave and in a constant field. 1. Sov. Phys. JETP 19, 529 (1964)

    MathSciNet  Google Scholar 

  31. J.H. Eberly, Proposed experiment for observation of nonlinear Compton wavelength shift. Phys. Rev. Lett. 15, 91 (1965)

    Article  ADS  Google Scholar 

  32. H.R. Reiss, Proposed experiment to detect the mass shift of an electron in an intense photon field. Phys. Rev. Lett. 17, 1162 (1966)

    Article  ADS  Google Scholar 

  33. J.H. Eberly, H.R. Reiss, Electron self-energy in intense plane-wave field. Phys. Rev. 145, 1035 (1966)

    Article  ADS  Google Scholar 

  34. J.H. Eberly, A. Sleeper, Trajectory and mass shift of a classical electron in a radiation pulse. Phys. Rev. 176, 1570 (1968)

    Article  ADS  Google Scholar 

  35. T.W.B. Kibble, A. Salam, J. Strathdee, Intensity-dependent mass shift and symmetry breaking. Nucl. Phys. B 96, 255 (1975)

    Article  ADS  Google Scholar 

  36. C. Harvey, T. Heinzl, A. Ilderton, M. Marklund, The intensity dependent mass shift: existence, universality and detection. Phys. Rev. Lett. 109, 100402 (2012)

    Article  ADS  Google Scholar 

  37. T. Heinzl, A. Ilderton, M. Marklund, Finite size effects in stimulated laser pair production. Phys. Lett. B 692, 250 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Felix Mackenroth .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mackenroth, K.F. (2014). Nonlinear Single Compton Scattering. In: Quantum Radiation in Ultra-Intense Laser Pulses. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-07740-6_3

Download citation

Publish with us

Policies and ethics