Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 533 Accesses

Abstract

The world as perceived by scientists is nowadays believed to be governed by four fundamental forces.

Fiat lux.

Genesis 1:3

We can scarcely avoid the inference that light consists in the transverse undulations of the same medium which is the cause of electric and magnetic phenomena.

James C. Maxwell

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E.B. Goldstein, Sensation and Perception, 8th edn. (Wadsworth Publishing Company, Independence, KY, 2009)

    Google Scholar 

  2. Nobel Prize in Physics 1965. http://www.nobelprize.org/nobel_prizes/physics/laureates/1965/index.html

  3. R. Pohl, A. Antognini, F. Nez, F.D. Amaro, F. Biraben, J.M.R. Cardoso, D.S. Covita, A. Dax, S. Dhawan, L.M.P. Fernandes, A. Giesen, T. Graf, T.W. Haensch, P. Indelicato, L. Julien, C. Kao, P. Knowles, E. Le Bigot, Y. Liu, J.A.M. Lopes, L. Ludhova, C.M.B. Monteiro, F. Mulhauser, T. Nebel, P. Rabinowitz, J.M.F. dos Santos, L. Schaller, K. Schuhmann, C. Schwob, D. Taqqu, J.F.C.A. Veloso, F. Kottmann, The size of the proton. Nature 466, 213 (2010)

    Google Scholar 

  4. D. Hanneke, S. Fogwell, G. Gabrielse, New measurement of the electron magnetic moment and the fine structure constant. Phys. Rev. Lett. 100, 120801 (2008)

    ADS  Google Scholar 

  5. H. Häffner, T. Beier, N. Hermanspahn, H. Kluge, W. Quint, S. Stahl, J. Verdú, G. Werth, High-accuracy measurement of the magnetic moment anomaly of the electron bound in hydrogenlike carbon. Phys. Rev. Lett. 85, 5308 (2000)

    ADS  Google Scholar 

  6. J. Verdú, S. Djekić, S. Stahl, T. Valenzuela, M. Vogel, G. Werth, T. Beier, H. Kluge, W. Quint, Electronic \(g\) Factor of hydrogen like oxygen \(^{16}\)O\(^{7+}\). Phys. Rev. Lett. 92, 093002 (2004)

    Google Scholar 

  7. S. Sturm, A. Wagner, B. Schabinger, J. Zatorski, Z. Harman, W. Quint, G. Werth, C.H. Keitel, K. Blaum, \(g\) Factor of hydrogenlike \(^{28}\)Si\(^{13+}\). Phys. Rev. Lett. 107, 023002 (2011)

    Google Scholar 

  8. S.G. Karshenboim, Precision physics of simple atoms: QED tests, nuclear structure and fundamental constants. Phys. Rep. 422, 1 (2005)

    ADS  Google Scholar 

  9. T. Beier, I. Lindgren, H. Persson, S. Salomonson, P. Sunnergren, H. Häffner, N. Hermanspahn, \({g}_{j}\) Factor of an electron bound in a hydrogen like ion. Phys. Rev. A 62, 032510 (2000)

    ADS  Google Scholar 

  10. J. Zatorski, N.S. Oreshkina, C.H. Keitel, Z. Harman, Nuclear shape effect on the \(g\) factor of hydrogen like ions. Phys. Rev. Lett. 108, 063005 (2012)

    ADS  Google Scholar 

  11. T. Beier, The g\(_j\) factor of a bound electron and the hyperfine structure splitting in hydrogen like ions. Phys. Rep. 339, 79 (2000)

    ADS  Google Scholar 

  12. V.M. Shabaev, V.A. Yerokhin, Recoil correction to the bound-electron \(g\) factor in H-like atoms to all orders in \(\alpha Z\). Phys. Rev. Lett. 88, 091801 (2002)

    ADS  Google Scholar 

  13. K. Pachucki, Nuclear mass correction to the magnetic interaction of atomic systems. Phys. Rev. A 78, 012504 (2008)

    ADS  Google Scholar 

  14. H. Grotch, Electron \(g\) factor in hydrogenic atoms. Phys. Rev. Lett. 24, 39 (1970)

    ADS  Google Scholar 

  15. V.A. Yerokhin, P. Indelicato, V.M. Shabaev, Evaluation of the self-energy correction to the \(g\) factor of \(S\) states in H-like ions. Phys. Rev. A 69, 052503 (2004)

    ADS  Google Scholar 

  16. K. Pachucki, U.D. Jentschura, V.A. Yerokhin, Nonrelativistic QED approach to the bound-electron \(g\) factor. Phys. Rev. Lett. 93, 150401 (2004)

    ADS  Google Scholar 

  17. R.N. Lee, A.I. Milstein, I.S. Terekhov, S.G. Karshenboim, Virtual light-by-light scattering and the \(g\) factor of a bound electron. Phys. Rev. A 71, 052501 (2005)

    ADS  Google Scholar 

  18. K. Pachucki, A. Czarnecki, U.D. Jentschura, V.A. Yerokhin, Complete two-loop correction to the bound-electron \(g\) factor. Phys. Rev. A 72, 022108 (2005)

    ADS  Google Scholar 

  19. L.D. Landau, E.M. Lifschitz, Lehrbuch der Theoretischen Physik - Band 4: Quantenelektrodynamik (Akademie Verlag, Berlin, 1991)

    Google Scholar 

  20. M.E. Peskin, D.V. Schroeder, An introduction to Quantum Field Theory (Westview Press, Boulder, 1995)

    Google Scholar 

  21. W. Greiner, J. Reinhardt, Quantum Electrodynamics (Springer, Heidelberg, 2002)

    Google Scholar 

  22. O. Klein, Die reflexion von elektronen an einem potentialsprung nach der relativistischen dynamik von dirac. Z. Phys. 53, 157 (1929)

    MATH  ADS  Google Scholar 

  23. P.A.M. Dirac, The quantum theory of the electron. P. Roy. Soc. Lond. A Mat. 117, 610 (1928)

    MATH  ADS  Google Scholar 

  24. F. Sauter, Ãœber das Verhalten eines Elektrons im homogenen elektrischen Feld nach der relativistischen Theorie Diracs. Z. Phys. 69, 742 (1931)

    ADS  Google Scholar 

  25. F. Sauter, Zum ’Kleinschen Paradoxon’. Z. Phys. 73, 547 (1931)

    ADS  Google Scholar 

  26. W. Heisenberg, H. Euler, Consequences of Dirac theory of the positron. Z. Phys. 98, 714 (1936)

    ADS  Google Scholar 

  27. J. Schwinger, On gauge invariance and vacuum polarization. Phys. Rev. 82, 664 (1951)

    MATH  MathSciNet  ADS  Google Scholar 

  28. T. Tajima, G. Mourou, Zettawatt-exawatt lasers and their applications in ultrastrong-field physics. Phys. Rev. ST Accel. Beams 5, 031301 (2002)

    ADS  Google Scholar 

  29. A. Di Piazza, C. Müller, K.Z. Hatsagortsyan, C.H. Keitel, Extremely high-intensity laser interactions with fundamental quantum systems. Rev. Mod. Phys 84, 1177 (2012)

    ADS  Google Scholar 

  30. F.V. Hartemann, A.L. Troha, H.A. Baldis, A. Gupta, A.K. Kerman, E.C. Landahl, N.C. Luhmann, J.R. Van Meter, High-intensity scattering processes of relativistic electrons in vacuum and their relevance to high-energy astrophysics. Astrophys. J. Suppl. S. 127, 347 (2000)

    Google Scholar 

  31. B.A. Remington, R. Drake, D.D. Ryutov, Experimental astrophysics with high power lasers and \(Z\) pinches. Rev. Mod. Phys. 78, 755 (2006)

    ADS  Google Scholar 

  32. S.H. Glenzer, R. Redmer, X-ray Thomson scattering in high energy density plasmas. Rev. Mod. Phys. 81, 1625 (2009)

    ADS  Google Scholar 

  33. F. Mandl, T.H.R. Skyrme, The theory of the double Compton effect. P. Roy. Soc. Lond. A Mat. 215, 497 (1952)

    MATH  ADS  Google Scholar 

  34. P.E. Cavanagh, The double Compton effect. Phys. Rev. 87, 1131 (1952)

    ADS  Google Scholar 

  35. E. Lötstedt, U.D. Jentschura, Nonperturbative treatment of double compton backscattering in intense laser fields. Phys. Rev. Lett. 103, 110404 (2009)

    Google Scholar 

  36. E. Lötstedt, U.D. Jentschura, Correlated two-photon emission by transitions of Dirac-Volkov states in intense laser fields: QED predictions. Phys. Rev. A 80, 053419 (2009)

    ADS  Google Scholar 

  37. P.C.W. Davies, Scalar production in Schwarzschild and Rindler metrics. J. Phys. A - Math. Gen. 8, 609 (1975)

    ADS  Google Scholar 

  38. W.G. Unruh, Notes on black-hole evaporation. Phys. Rev. D 14, 870 (1976)

    ADS  Google Scholar 

  39. L.C.B. Crispino, A. Higuchi, G.E.A. Matsas, The Unruh effect and its applications. Rev. Mod. Phys. 80, 787 (2008)

    MATH  MathSciNet  ADS  Google Scholar 

  40. P. Chen, T. Tajima, Testing Unruh radiation with ultra intense lasers. Phys. Rev. Lett. 83, 256 (1999)

    ADS  Google Scholar 

  41. R. Schützhold, G. Schaller, D. Habs, Tabletop creation of entangled multi-keV photon pairs and the Unruh effect. Phys. Rev. Lett. 100, 091301 (2008)

    ADS  Google Scholar 

  42. P.G. Thirolf, D. Habs, A. Henig, D. Jung, D. Kiefer, C. Lang, J. Schreiber, C. Maia, G. Schaller, R. Schützhold, T. Tajima, Signatures of the Unruh effect via high-power, short-pulse lasers. Eur. Phys. J. D 55, 379 (2009)

    ADS  Google Scholar 

  43. W. Greiner, B. Müller, J. Rafelski, Quantum Electrodynamics of Strong Fields (Springer, Heidelberg, 1985)

    Google Scholar 

  44. G. Baur, K. Hencken, D. Trautmann, Electronpositron pair production in ultrarelativistic heavy ion collisions. Phys. Rep. 453, 1 (2007)

    Google Scholar 

  45. T.H. Maiman, Stimulated optical radiation in ruby. Nature 187, 493 (1960)

    ADS  Google Scholar 

  46. H.R. Reiss, Absorption of light by light. J. Math. Phys. 3, 59 (1962)

    MATH  MathSciNet  ADS  Google Scholar 

  47. J.J. Klein, B.P. Nigam, Birefringence of the vacuum. Phys. Rev. 135, B1279 (1964)

    MathSciNet  ADS  Google Scholar 

  48. Z. Bialynicka-Birula, I. Bialynicki-Birula, Nonlinear effects in quantum electrodynamics. Photon propagation and photon splitting in an external field. Phys. Rev. D 2, 2341 (1970)

    ADS  Google Scholar 

  49. E. Brezin, C. Itzykson, Polarization phenomena in vacuum nonlinear electrodynamics. Phys. Rev. D 3, 618 (1971)

    ADS  Google Scholar 

  50. L.S. Brown, T.W.B. Kibble, Interaction of intense laser beams with electrons. Phys. Rev. 133, A705 (1964)

    ADS  Google Scholar 

  51. A.I. Nikishov, V.I. Ritus, Quantum processes in the field of a plane electromagnetic wave and in a constant field.1. Sov. Phys. JETP 19, 529 (1964)

    Google Scholar 

  52. Z. Fried, J.H. Eberly, Scattering of a high-intensity, low-frequency electromagnetic wave by an unbound electron. Phys. Rev. 136, B871 (1964)

    MathSciNet  ADS  Google Scholar 

  53. I.I. Goldman, Intensity effects in Compton scattering. Phys. Lett. 8, 103 (1964)

    MATH  ADS  Google Scholar 

  54. T.W.B. Kibble, Frequency shift in high-intensity Compton scattering. Phys. Rev. 138, B740 (1965)

    MathSciNet  ADS  Google Scholar 

  55. Z. Fried, A. Baker, D. Korff, Comments on intensity-dependent frequency shift in Compton scattering and its possible detection. Phys. Rev. 151, 1040 (1966)

    ADS  Google Scholar 

  56. T.W.B. Kibble, Mutual refraction of electrons and photons. Phys. Rev. 150, 1060 (1966)

    ADS  Google Scholar 

  57. F. Ehlotzky, Theory of renormalization and Compton scattering in quantum electrodynamics of coherent light of high intensity. Z. Phys. A - Hadron. Nucl. 203, 119 (1967)

    Google Scholar 

  58. Y.B. Zel’dovich, Interaction of free electrons with electromagnetic radiation. Sov. Phys. - Uspekhi 18, 79 (1975)

    MathSciNet  ADS  Google Scholar 

  59. V.N. Baier, V.M. Katkov, A.I. Milshtein, V.M. Strakhovenko, Contribution to theory of quantum processes in field, of an intense electromagnetic wave. J. Exp. Theo. Phys. 69, 783 (1975)

    Google Scholar 

  60. V.N. Baier, A.I. Milshtein, V.M. Strakhovenko, Interaction between a photon and an intense electromagnetic wave. Sov. Phys. JETP 42, 961 (1976)

    MathSciNet  ADS  Google Scholar 

  61. V.I. Ritus, Quantum effects of the interaction of elementary particles with an intense electromagnetic field. J. Russ. Laser Res. 6, 497 (1985)

    Google Scholar 

  62. A.I. Nikishov, V.I. Ritus, Pair production by a photon and photon emission by an electron in field of an intense electromagnetic wave and in a constant field. Sov. Phys. JETP 25, 1135 (1967)

    ADS  Google Scholar 

  63. H.R. Reiss, Pair production in vacuum by interaction of light with light. Bull. Am. Phys. Soc. 16, 119 (1971)

    Google Scholar 

  64. L.V. Keldysh, Ionization in the field of a strong electromagnetic wave. J. Exp. Theo. Phys. 47, 1945 (1964)

    Google Scholar 

  65. H.R. Reiss, Effect of an intense electromagnetic field on a weakly bound system. Phys. Rev. A 22, 1786 (1980)

    ADS  Google Scholar 

  66. P.B. Corkum, N.H. Burnett, F. Brunel, Above-threshold ionization in the long-wavelength limit. Phys. Rev. Lett. 62, 1259 (1989)

    ADS  Google Scholar 

  67. J.H. Eberly, H.R. Reiss, Electron self-energy in intense plane-wave field. Phys. Rev. 145, 1035 (1966)

    ADS  Google Scholar 

  68. H.R. Reiss, J.H. Eberly, Green’s function in intense-field electrodynamics. Phys. Rev. 151, 1058 (1966)

    ADS  Google Scholar 

  69. Vachaspati, Harmonics in the scattering of light by free electrons. Phys. Rev. 128, 664 (1962)

    Google Scholar 

  70. J.H. Eberly, A. Sleeper, Trajectory and mass shift of a classical electron in a radiation pulse. Phys. Rev. 176, 1570 (1968)

    Google Scholar 

  71. E.S. Sarachik, G.T. Schappert, Classical theory of the scattering of intense laser radiation by free electrons. Phys. Rev. D 1, 2738 (1970)

    ADS  Google Scholar 

  72. J.W. Meyer, Covariant classical motion of electron in a laser beam. Phys. Rev. D 3, 621 (1971)

    ADS  Google Scholar 

  73. Y.I. Salamin, F.H.M. Faisal, Harmonic generation by superintense light scattering from relativistic electrons. Phys. Rev. A 54, 4383 (1996)

    ADS  Google Scholar 

  74. Y.I. Salamin, F.H.M. Faisal, Ponderomotive scattering of electrons in intense laser fields. Phys. Rev. A 55, 3678 (1997)

    ADS  Google Scholar 

  75. F.V. Hartemann, D.J. Gibson, A.K. Kerman, Classical theory of Compton scattering: assessing the validity of the Dirac-Lorentz equation. Phys. Rev. E 72, 026502 (2005)

    ADS  Google Scholar 

  76. D. Strickland, G. Mourou, Compression of amplified chirped optical pulses. Opt. Comm. 56, 219 (1985)

    ADS  Google Scholar 

  77. P. Maine, D. Strickland, P. Bado, M. Pessot, G. Mourou, Generation of ultrahigh peak power pulses by chirped pulse amplification. IEEE J. Quant. Elect. 24, 398 (1988)

    ADS  Google Scholar 

  78. M.D. Perry, G. Mourou, Terawatt to petawatt subpicosecond lasers. Science 264, 917 (1994)

    ADS  Google Scholar 

  79. V. Yanovsky, V. Chvykov, G. Kalinchenko, P. Rousseau, T. Planchon, T. Matsuoka, A. Maksimchuk, J. Nees, G. Cheriaux, G. Mourou, K. Krushelnick, Ultra-high intensity- 300-TW laser at 0.1 Hz repetition rate. Opt. Exp. 16, 2109 (2008)

    Google Scholar 

  80. PFS, Petawatt Field Synthesizer, http://www.attoworld.de/Home/ourResearch/ToolsAndTechniques/Petawatt-scaleSourceOfIrLight/index.html

  81. ELI, Extreme Light Infrastructure, http://www.extreme-light-infrastructure.eu/

  82. HiPER, High Power laser Energy Research facility, http://www.hiper-laser.org/index.asp/

  83. G. Mourou, T. Tajima, More intense shorter pulses. Science 331, 41 (2011)

    ADS  Google Scholar 

  84. G. Mourou, T. Tajima, S.V. Bulanov, Optics in the relativistic regime. Rev. Mod. Phys. 78, 309 (2006)

    ADS  Google Scholar 

  85. L.D. Landau, E.M. Lifschitz, Lehrbuch der Theoretischen Physik - Band 2: Klassische Feldtheorie (Akademie Verlag, Berlin, 1997)

    Google Scholar 

  86. H.R. Reiss, Proposed experiment to detect the mass shift of an electron in an intense photon field. Phys. Rev. Lett. 17, 1162 (1966)

    ADS  Google Scholar 

  87. C. Harvey, T. Heinzl, A. Ilderton, M. Marklund, The intensity dependent mass shift: existence, universality and detection. Phys. Rev. Lett. 109, 100402 (2012)

    ADS  Google Scholar 

  88. J.H. Eberly, Proposed experiment for observation of nonlinear compton wavelength shift. Phys. Rev. Lett. 15, 91 (1965)

    ADS  Google Scholar 

  89. C. Bamber, S.J. Boege, T. Koffas, T. Kotseroglou, A.C. Melissinos, D.D. Meyerhofer, D.A. Reis, W. Ragg, C. Bula, K.T. McDonald, E.J. Prebys, D.L. Burke, R.C. Field, G. Horton-Smith, J.E. Spencer, D. Walz, S.C. Berridge, W.M. Bugg, K. Shmakov, A.W. Weidemann, Studies of nonlinear QED in collisions of 46.6 GeV electrons with intense laser pulses. Phys. Rev. D 60, 092004 (1999)

    ADS  Google Scholar 

  90. T.J. Englert, E.A. Rinehart, Second-harmonic photons from the interaction of free electrons with intense laser radiation. Phys. Rev. A 28, 1539 (1983)

    ADS  Google Scholar 

  91. C. Bula, K.T. McDonald, E.J. Prebys, C. Bamber, S. Boege, T. Kotseroglou, A.C. Melissinos, D.D. Meyerhofer, W. Ragg, D.L. Burke, R.C. Field, G. Horton-Smith, A.C. Odian, J.E. Spencer, D. Walz, S.C. Berridge, W.M. Bugg, K. Shmakov, A.W. Weidemann, Observation of nonlinear effects in Compton scattering. Phys. Rev. Lett. 76, 3116 (1996)

    Google Scholar 

  92. S.Y. Chen, A. Maksimchuk, D. Umstadter, Experimental observation of relativistic nonlinear Thomson scattering. Nature 396, 653 (1998)

    ADS  Google Scholar 

  93. D.L. Burke, R.C. Field, G. Horton-Smith, J.E. Spencer, D. Walz, S.C. Berridge, W.M. Bugg, K. Shmakov, A.W. Weidemann, C. Bula, K.T. McDonald, E.J. Prebys, C. Bamber, S.J. Boege, T. Koffas, T. Kotseroglou, A.C. Melissinos, D.D. Meyerhofer, D.A. Reis, W. Ragg, Positron production in multiphoton light-by-light scattering. Phys. Rev. Lett. 79, 1626 (1997)

    Google Scholar 

  94. V.N. Baier, V.M. Katkov, V.M. Strakhovenko, Electromagnetic Processes at High Energies in Oriented Single Crystals (World Scientific, Singapore, 1994)

    Google Scholar 

  95. A.H. Compton, A quantum theory of the scattering of X-rays by light elements. Phys. Rev. 21, 483 (1923)

    ADS  Google Scholar 

  96. T. Tajima, J.M. Dawson, Laser electron accelerator. Phys. Rev. Lett. 43, 267 (1979)

    ADS  Google Scholar 

  97. C.G.R. Geddes, C. Toth, J. van Tilborg, E. Esarey, C.B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, W.P. Leemans, High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538 (2004)

    ADS  Google Scholar 

  98. W.P. Leemans, B. Nagler, A.J. Gonsalves, C. Toth, K. Nakamura, C.G.R. Geddes, E. Esarey, C.B. Schroeder, S.M. Hooker, GeV electron beams from a centimetre-scale accelerator. Nat. Phys. 2, 696 (2006)

    Google Scholar 

  99. C.E. Clayton, J.E. Ralph, F. Albert, R.A. Fonseca, S.H. Glenzer, C. Joshi, W. Lu, K.A. Marsh, S.F. Martins, W.B. Mori, A. Pak, F.S. Tsung, B.B. Pollock, J.S. Ross, L.O. Silva, D.H. Froula, Self-guided laser wakefield acceleration beyond 1 GeV using ionization-induced injection. Phys. Rev. Lett. 105, 105003 (2010)

    ADS  Google Scholar 

  100. Y.I. Salamin, Z. Harman, C.H. Keitel, Direct high-power laser acceleration of ions for medical applications. Phys. Rev. Lett. 100, 155004 (2008)

    ADS  Google Scholar 

  101. R. Kodama, P.A. Norreys, K. Mima, A.E. Dangor, R.G. Evans, H. Fujita, Y. Kitagawa, K. Krushelnick, T. Miyakoshi, N. Miyanaga, T. Norimatsu, S.J. Rose, T. Shozaki, K. Shigemori, A. Sunahara, M. Tampo, K.A. Tanaka, Y. Toyama, Y. Yamanaka, M. Zepf, Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition. Nature 412, 798 (2001)

    Google Scholar 

  102. R. Kodama, H. Shiraga, K. Shigemori, Y. Toyama, S. Fujioka, H. Azechi, H. Fujita, H. Habara, T. Hall, Y. Izawa, T. Jitsuno, Y. Kitagawa, K. Krushelnick, K.L. Lancaster, K. Mima, K. Nagai, M. Nakai, H. Nishimura, T. Norimatsu, P.A. Norreys, S. Sakabe, K.A. Tanaka, A. Youssef, M. Zepf, Fast ignitor consortium, Nuclear fusion—Fast heating scalable to laser fusion ignition. Nature 418, 933 (2002)

    Google Scholar 

  103. E. Esarey, S.K. Ride, P. Sprangle, Nonlinear Thomson scattering of intense laser pulses from beams and plasmas. Phys. Rev. E 48, 3003 (1993)

    ADS  Google Scholar 

  104. Y.Y. Lau, F. He, D. Umstadter, R. Kowalczyk, Nonlinear Thomson scattering: a tutorial. Phys. Plas. 10, 2155 (2003)

    ADS  Google Scholar 

  105. B. Liesfeld, A Photon Collider at Relativistic Intensity (Books on Demand, Norderstedt, 2006)

    Google Scholar 

  106. C. Müller, K.Z. Hatsagortsyan, C.H. Keitel, Particle physics with a laser-driven positronium atom. Phys. Lett. B 659, 209 (2008)

    ADS  Google Scholar 

  107. C. Müller, A. Di Piazza, A. Shahbaz, T. Bürvenich, J. Evers, K.Z. Hatsagortsyan, C.H. Keitel, High-energy, nuclear, and QED processes in strong laser fields. Laser Phys. 18, 175 (2008)

    ADS  Google Scholar 

  108. C. Müller, C. Deneke, C.H. Keitel, Muon-pair creation by two X-ray laser photons in the field of an atomic nucleus. Phys. Rev. Lett. 101, 060402 (2008)

    Google Scholar 

  109. A. Di Piazza, K.Z. Hatsagortsyan, C.H. Keitel, Quantum radiation reaction effects in multiphoton Compton scattering. Phys. Rev. Lett. 105, 220403 (2010)

    Google Scholar 

  110. A. Di Piazza, K.Z. Hatsagortsyan, C.H. Keitel, Harmonic generation from laser-driven vacuum. Phys. Rev. D 72, 085005 (2005)

    ADS  Google Scholar 

  111. A. Di Piazza, K.Z. Hatsagortsyan, C.H. Keitel, Light diffraction by a strong standing electromagnetic wave. Phys. Rev. Lett. 97, 083603 (2006)

    ADS  Google Scholar 

  112. A. Di Piazza, K.Z. Hatsagortsyan, C.H. Keitel, Nonlinear interaction of strong laser fields in vacuum. Laser Phys. 17, 345 (2007)

    ADS  Google Scholar 

  113. B. King, A. Di Piazza, C.H. Keitel, A matterless double slit. Nature Photonics 4, 92 (2010)

    ADS  Google Scholar 

  114. H.G. Hetzheim, C.H. Keitel, Ionization dynamics versus laser intensity in laser-driven multiply charged ions. Phys. Rev. Lett. 102, 083003 (2009)

    ADS  Google Scholar 

  115. O. Har-Shemesh, A. Di Piazza, Peak intensity measurement of relativistic lasers via nonlinear Thomson scattering. Opt. Exp. 37, 1352 (2012)

    ADS  Google Scholar 

  116. F. Mackenroth, A. Di Piazza, C.H. Keitel, Determining the carrier-envelope phase of intense few-cycle laser pulses. Phys. Rev. Lett. 105, 063903 (2010)

    ADS  Google Scholar 

  117. A. Zeilinger, Experiment and the foundations of quantum physics. Rev. Mod. Phys. 71, S288 (1999)

    Google Scholar 

  118. A. Peres, D.R. Terno, Quantum information and relativity theory. Rev. Mod. Phys. 76, 93 (2004)

    MATH  MathSciNet  ADS  Google Scholar 

  119. H.C. Wu, J. Meyer-ter-Vehn, Giant half-cycle attosecond pulses. Nat. Photonics 6, 304 (2012)

    ADS  Google Scholar 

  120. A. Bonvalet, M. Joffre, J.L. Martin, A. Migus, Generation of ultrabroadband femtosecond pulses in the mid-infrared by optical rectification of 15 fs light pulses at 100 MHz repetition rate. Appl. Phys. Lett. 67, 2907 (1995)

    ADS  Google Scholar 

  121. G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, A. Leitenstorfer, Synthesis of a single cycle of light with compact erbium-doped fibre technology. Nat. Photonics 4, 33 (2010)

    ADS  Google Scholar 

  122. A.L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultze, M. Fie, V. Pervak, L. Veisz, V.S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, R. Kienberger, Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua. New. J. Phys. 9, 242 (2007)

    Google Scholar 

  123. G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, M. Nisoli, Isolated single-cycle attosecond pulses. Science 314, 443 (2006)

    ADS  Google Scholar 

  124. E. Goulielmakis, M. Schultze, M. Hofstetter, V.S. Yakovlev, J. Gagnon, M. Uiberacker, A.L. Aquila, E.M. Gullikson, D.T. Attwood, R. Kienberger, F. Krausz, U. Kleineberg, Single-cycle nonlinear optics. Science 320, 1614 (2008)

    Google Scholar 

  125. N.B. Narozhnyi, M.S. Fofanov, Photon emission by electron during collision with short focused laser pulses. J. Exp. Theo. Phys. 110, 26 (1996)

    Google Scholar 

  126. P.J. Mohr, B.N. Taylor, D.B. Newell, CODATA recommended values of the fundamental physical constants: 2006. Rev. Mod. Phys. 80, 633 (2008)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Felix Mackenroth .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mackenroth, K.F. (2014). Introduction. In: Quantum Radiation in Ultra-Intense Laser Pulses. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-07740-6_1

Download citation

Publish with us

Policies and ethics