Skip to main content

Synthesis of Persistent Systems

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 8489)

Abstract

This paper presents efficient, specialised synthesis and reengineering algorithms for the case that a transition system is finite, persistent and reversible. It also shows by means of a complex example that structural properties of the synthesised Petri nets may not necessarily be entailed.

Keywords

  • Cyclic Behaviour
  • Persistency
  • Labelled Transition Systems
  • Parikh Vectors
  • Petri Nets
  • Region Theory
  • System Synthesis
  • Reengineering

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-07734-5_7
  • Chapter length: 19 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-07734-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Badouel, É., Bernardinello, L., Darondeau, P.: Petri Net Synthesis, 330 pages. Springer (in preparation, 2014)

    Google Scholar 

  2. Badouel, É., Bernardinello, L., Darondeau, P.: Polynomial Algorithms for the Synthesis of Bounded Nets. In: Mosses, P.D., Nielsen, M., Schwartzbach, M.I. (eds.) TAPSOFT 1995. LNCS, vol. 915, pp. 364–378. Springer, Heidelberg (1995)

    CrossRef  Google Scholar 

  3. Badouel, É.: Theory of Regions. In: Reisig, W., Rozenberg, G. (eds.) APN 1998. LNCS, vol. 1491, pp. 529–586. Springer, Heidelberg (1998)

    CrossRef  Google Scholar 

  4. Best, E., Darondeau, P.: A Decomposition Theorem for Finite Persistent Transition Systems. Acta Informatica 46, 237–254 (2009)

    MathSciNet  CrossRef  Google Scholar 

  5. Best, E., Darondeau, P.: Petri Net Distributability. In: Clarke, E., Virbitskaite, I., Voronkov, A. (eds.) PSI 2011. LNCS, vol. 7162, pp. 1–18. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  6. Best, E., Devillers, R.: Solving LTS with Parikh-unique Cycles. TR 2/14, Dep. Informatik, Carl von Ossietzky Universität Oldenburg, 80 pages (February 2014)

    Google Scholar 

  7. Best, E., Devillers, R.: Characterisation of the State Spaces of Live and Bounded Marked Graph Petri Nets. In: Dediu, A.-H., Martín-Vide, C., Sierra-Rodríguez, J.-L., Truthe, B. (eds.) LATA 2014. LNCS, vol. 8370, pp. 161–172. Springer, Heidelberg (2014)

    CrossRef  Google Scholar 

  8. Caillaud, B.: http://www.irisa.fr/s4/tools/synet/

  9. Devillers, R.: plain.c, pure.c, frag.c: Specially tailored programs written in C++

    Google Scholar 

  10. Hack, M.: Analysis of production schemata by Petri nets, M.S. thesis, D.E.E. MIT. Cambridge Mass. Project MAC-TR 94 (1972)

    Google Scholar 

  11. Keller, R.M.: A Fundamental Theorem of Asynchronous Parallel Computation. In: Tse-Yun, F. (ed.) Parallel Processing. LNCS, vol. 24, pp. 102–112. Springer, Heidelberg (1975)

    CrossRef  Google Scholar 

  12. Kondratyev, A., Cortadella, J., Kishinevsky, M., Pastor, E., Roig, O., Yakovlev, A.: Checking Signal Transition Graph Implementability by Symbolic BDD Traversal. In: Proc. European Design and Test Conference, Paris, France, pp. 325–332 (1995)

    Google Scholar 

  13. Lamport, L.: Arbiter-Free Synchronization. Distributed Computing 16(2/3), 219–237 (2003)

    CrossRef  Google Scholar 

  14. Landweber, L.H., Robertson, E.L.: Properties of Conflict-Free and Persistent Petri Nets. J. ACM 25(3), 352–364 (1978)

    MathSciNet  CrossRef  Google Scholar 

  15. Schlachter, U., et al.: https://github.com/renke/apt

  16. Teruel, E., Colom, J.M., Silva, M.: Choice-Free Petri nets: a model for deterministic concurrent systems with bulk services and arrivals. IEEE Transactions on Systems, Man and Cybernetics, Part A, 73–83 (1997)

    CrossRef  Google Scholar 

  17. Ville, J.: Sur la théorie générale des jeux où intervient l’habileté des joueurs. In: Borel, E. (ed.) Traité du calcul des probabilités et de ses applications, vol. 4, pp. 105–113. Gauthiers-Villars (1938)

    Google Scholar 

  18. Yakovlev, A.: Designing control logic for counterflow pipeline processor using Petri nets. Formal Methods in Systems Design 12(1), 39–71 (1998)

    CrossRef  Google Scholar 

  19. Yakovlev, A.: Theory and practice of using models of concurrency in hardware design. DSc Thesis, University of Newcastle upon Tyne (August 2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Best, E., Devillers, R. (2014). Synthesis of Persistent Systems. In: Ciardo, G., Kindler, E. (eds) Application and Theory of Petri Nets and Concurrency. PETRI NETS 2014. Lecture Notes in Computer Science, vol 8489. Springer, Cham. https://doi.org/10.1007/978-3-319-07734-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07734-5_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07733-8

  • Online ISBN: 978-3-319-07734-5

  • eBook Packages: Computer ScienceComputer Science (R0)