Abstract

This paper presents efficient, specialised synthesis and reengineering algorithms for the case that a transition system is finite, persistent and reversible. It also shows by means of a complex example that structural properties of the synthesised Petri nets may not necessarily be entailed.

Keywords

Cyclic Behaviour Persistency Labelled Transition Systems Parikh Vectors Petri Nets Region Theory System Synthesis Reengineering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Badouel, É., Bernardinello, L., Darondeau, P.: Petri Net Synthesis, 330 pages. Springer (in preparation, 2014)Google Scholar
  2. 2.
    Badouel, É., Bernardinello, L., Darondeau, P.: Polynomial Algorithms for the Synthesis of Bounded Nets. In: Mosses, P.D., Nielsen, M., Schwartzbach, M.I. (eds.) TAPSOFT 1995. LNCS, vol. 915, pp. 364–378. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  3. 3.
    Badouel, É.: Theory of Regions. In: Reisig, W., Rozenberg, G. (eds.) APN 1998. LNCS, vol. 1491, pp. 529–586. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  4. 4.
    Best, E., Darondeau, P.: A Decomposition Theorem for Finite Persistent Transition Systems. Acta Informatica 46, 237–254 (2009)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Best, E., Darondeau, P.: Petri Net Distributability. In: Clarke, E., Virbitskaite, I., Voronkov, A. (eds.) PSI 2011. LNCS, vol. 7162, pp. 1–18. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Best, E., Devillers, R.: Solving LTS with Parikh-unique Cycles. TR 2/14, Dep. Informatik, Carl von Ossietzky Universität Oldenburg, 80 pages (February 2014)Google Scholar
  7. 7.
    Best, E., Devillers, R.: Characterisation of the State Spaces of Live and Bounded Marked Graph Petri Nets. In: Dediu, A.-H., Martín-Vide, C., Sierra-Rodríguez, J.-L., Truthe, B. (eds.) LATA 2014. LNCS, vol. 8370, pp. 161–172. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  8. 8.
  9. 9.
    Devillers, R.: plain.c, pure.c, frag.c: Specially tailored programs written in C++ Google Scholar
  10. 10.
    Hack, M.: Analysis of production schemata by Petri nets, M.S. thesis, D.E.E. MIT. Cambridge Mass. Project MAC-TR 94 (1972)Google Scholar
  11. 11.
    Keller, R.M.: A Fundamental Theorem of Asynchronous Parallel Computation. In: Tse-Yun, F. (ed.) Parallel Processing. LNCS, vol. 24, pp. 102–112. Springer, Heidelberg (1975)CrossRefGoogle Scholar
  12. 12.
    Kondratyev, A., Cortadella, J., Kishinevsky, M., Pastor, E., Roig, O., Yakovlev, A.: Checking Signal Transition Graph Implementability by Symbolic BDD Traversal. In: Proc. European Design and Test Conference, Paris, France, pp. 325–332 (1995)Google Scholar
  13. 13.
    Lamport, L.: Arbiter-Free Synchronization. Distributed Computing 16(2/3), 219–237 (2003)CrossRefGoogle Scholar
  14. 14.
    Landweber, L.H., Robertson, E.L.: Properties of Conflict-Free and Persistent Petri Nets. J. ACM 25(3), 352–364 (1978)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Schlachter, U., et al.: https://github.com/renke/apt
  16. 16.
    Teruel, E., Colom, J.M., Silva, M.: Choice-Free Petri nets: a model for deterministic concurrent systems with bulk services and arrivals. IEEE Transactions on Systems, Man and Cybernetics, Part A, 73–83 (1997)Google Scholar
  17. 17.
    Ville, J.: Sur la théorie générale des jeux où intervient l’habileté des joueurs. In: Borel, E. (ed.) Traité du calcul des probabilités et de ses applications, vol. 4, pp. 105–113. Gauthiers-Villars (1938)Google Scholar
  18. 18.
    Yakovlev, A.: Designing control logic for counterflow pipeline processor using Petri nets. Formal Methods in Systems Design 12(1), 39–71 (1998)CrossRefGoogle Scholar
  19. 19.
    Yakovlev, A.: Theory and practice of using models of concurrency in hardware design. DSc Thesis, University of Newcastle upon Tyne (August 2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Eike Best
    • 1
  • Raymond Devillers
    • 2
  1. 1.Department of Computing ScienceCarl von Ossietzky Universität OldenburgGermany
  2. 2.Département d’InformatiqueUniversité Libre de BruxellesBelgium

Personalised recommendations