Skip to main content

Energy-Utility Analysis for Resilient Systems Using Probabilistic Model Checking

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 8489)

Abstract

The automated quantitative system analysis in terms of probabilistic model checking (PMC) is nowadays well-established and has been applied successfully in various areas. Recently, we showed how PMC can be applied for the trade-off analysis between several cost and reward functions, such as energy and utility. Besides utility, also the resilience of a system, i.e., the systems capability to operate successfully even in unfavorable conditions, crucially depends on costs invested: It is well-known that better resilience can be achieved, e.g., through introducing redundant components, which however may yield higher energy consumption.

In this paper, we focus on the interplay energy, utility and resilience. The formalization of the resulting trade-offs requires several concepts like quantiles, conditional probabilities and expectations and ratios of cost or reward functions. We present an overview how these quantitative measures for resilience mechanisms can be computed when the resilient systems are modeled either as discrete or continuous-time Markov chains. All the presented concepts of multi-objective reasoning are not supported by state-of-the-art probabilistic model checkers yet. By means of a small case study following the modular redundancy principle, we exemplify a resilience analysis within our prototype implementations.

Keywords

  • Markov Chain
  • Markov Decision Process
  • Reward Function
  • Linear Temporal Logic
  • Software Product Line

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

The authors are supported by the DFG through the collaborative research centre HAEC (SFB 912), the cluster of excellence cfAED, Deutsche Telekom Stiftung, the ESF young researcher groups IMData (100098198) and SREX (100111037), the Graduiertenkolleg QuantLA (1763) the DFG/NWO-project ROCKS, and the EU-FP-7 grant MEALS (295261).

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-07734-5_2
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-07734-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aggarwal, V., Chandrasekaran, R., Nair, K.: Markov ratio decision processes. Journal of Optimization Theory and Application 21(1) (1977)

    MathSciNet  CrossRef  Google Scholar 

  2. Andova, S., Hermanns, H., Katoen, J.-P.: Discrete-time rewards model-checked. In: Larsen, K.G., Niebert, P. (eds.) FORMATS 2003. LNCS, vol. 2791, pp. 88–104. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  3. Andrés, M.E., van Rossum, P.: Conditional probabilities over probabilistic and nondeterministic systems. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 157–172. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  4. Baier, C., Cloth, L., Haverkort, B.R., Hermanns, H., Katoen, J.-P.: Performability assessment by model checking of Markov reward models. Formal Methods in System Design 36(1), 1–36 (2010)

    CrossRef  Google Scholar 

  5. Baier, C., Daum, M., Dubslaff, C., Klein, J., Klüppelholz, S.: Energy-utility quantiles. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2014. LNCS, vol. 8430, pp. 285–299. Springer, Heidelberg (2014)

    CrossRef  Google Scholar 

  6. Baier, C., Daum, M., Engel, B., Härtig, H., Klein, J., Klüppelholz, S., Märcker, S., Tews, H., Völp, M.: Locks: Picking key methods for a scalable quantitative analysis. Journal of Computer and System Sciences (to appear, 2014)

    Google Scholar 

  7. Baier, C., Dubslaff, C., Klein, J., Klüppelholz, S., Wunderlich, S.: Probabilistic model checking for energy-utility analysis. In: Kashefi, E., Palamidessi, C., Rutten, J. (eds.) Panangaden Festschrift. LNCS, vol. 8464, pp. 96–123. Springer, Heidelberg (2014)

    Google Scholar 

  8. Baier, C., Engel, B., Klüppelholz, S., Märcker, S., Tews, H., Völp, M.: A probabilistic quantitative analysis of probabilistic-write/Copy-select. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 307–321. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  9. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press (2008)

    Google Scholar 

  10. Baier, C., Klein, J., Klüppelholz, S., Märcker, S.: Computing conditional probabilities in markovian models efficiently. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 515–530. Springer, Heidelberg (2014)

    CrossRef  Google Scholar 

  11. Baier, C., Klein, J., Klüppelholz, S., Wunderlich, S.: Weight monitoring with linear temporal logic: Complexity and decidability. In: 29th ACM/IEEE Symposium on Logic in Computer Science, LICS 2014 (2014) (accepted for publication)

    Google Scholar 

  12. Bianco, A., de Alfaro, L.: Model checking of probabilistic and non-deterministic systems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 499–513. Springer, Heidelberg (1995)

    CrossRef  Google Scholar 

  13. Brázdil, T., Kučera, A., Stražovský, O.: On the Decidability of Temporal Properties of Probabilistic Pushdown Automata. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 145–157. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  14. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press (2000)

    Google Scholar 

  15. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. Journal of the ACM 42(4), 857–907 (1995)

    MathSciNet  CrossRef  Google Scholar 

  16. de Alfaro, L.: Formal Verification of Probabilistic Systems. PhD thesis, Stanford University, Department of Computer Science (1997)

    Google Scholar 

  17. de Alfaro, L.: How to specify and verify the long-run average behavior of probabilistic systems. In: 13th Annual IEEE Symposium on Logic in Computer Science (LICS), pp. 454–465. IEEE Computer Society (1998)

    Google Scholar 

  18. de Alfaro, L.: Computing minimum and maximum reachability times in probabilistic systems. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 66–81. Springer, Heidelberg (1999)

    CrossRef  Google Scholar 

  19. Desharnais, J., Panangaden, P.: Continuous stochastic logic characterizes bisimulation of continuous-time Markov processes. Journal of Logic and Algebraic Programming 56(1-2), 99–115 (2003)

    MathSciNet  CrossRef  Google Scholar 

  20. Dubslaff, C., Klüppelholz, S., Baier, C.: Probabilistic model checking for energy analysis in software product lines. In: 13th International Conference on Modularity (MODULARITY). ACM Press (to appear, 2014)

    Google Scholar 

  21. Gao, Y., Xu, M., Zhan, N., Zhang, L.: Model checking conditional CSL for continuous-time Markov chains. IPL 113(1-2), 44–50 (2013)

    MathSciNet  CrossRef  Google Scholar 

  22. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games. LNCS, vol. 2500. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  23. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Aspects of Computing 6, 512–535 (1994)

    CrossRef  Google Scholar 

  24. Haverkort, B.: Performance of Computer Communication Systems: A Model-Based Approach. Wiley (1998)

    Google Scholar 

  25. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for automatic verification of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  26. Ji, M., Wu, D., Chen, Z.: Verification method of conditional probability based on automaton. Journal of Networks 8(6), 1329–1335 (2013)

    CrossRef  Google Scholar 

  27. Katoen, J.-P., Zapreev, I., Hahn, E., Hermanns, H., Jansen, D.: The ins and outs of the probabilistic model checker MRMC. Performance Evaluation 68(2) (2011)

    CrossRef  Google Scholar 

  28. Kulkarni, V.: Modeling and Analysis of Stochastic Systems. Chapman and Hall (1995)

    Google Scholar 

  29. Laprie, J.-C.: From dependability to resilience. In: 38th Annual IEEE/IFIP International Conference on Dependable Systems and Networks(DSN), Page Fast Abstracts, Abstracts, Anchorage, AK (June 2008)

    Google Scholar 

  30. Maruyama, H., Minami, K.: Towards systems resilience. Innovation and Supply Chain Management 7(3) (2013)

    CrossRef  Google Scholar 

  31. Panangaden, P.: Measure and probability for concurrency theorists. Theoretical Computer Science 253(2), 287–309 (2001)

    MathSciNet  CrossRef  Google Scholar 

  32. Puterman, M.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley & Sons (1994)

    Google Scholar 

  33. Serfling, R.J.: Approximation Theorems of Mathematical Statistics. John Wiley & Sons (1980)

    Google Scholar 

  34. Ummels, M., Baier, C.: Computing quantiles in Markov reward models. In: Pfenning, F. (ed.) FOSSACS 2013. LNCS, vol. 7794, pp. 353–368. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  35. Vardi, M.: Automatic verification of probabilistic concurrent finite-state programs. In: 26th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 327–338. IEEE Computer Society (1985)

    Google Scholar 

  36. von Essen, C., Jobstmann, B.: Synthesizing systems with optimal average-case behavior for ratio objectives. In: International Workshop on Interactions, Games and Protocols (iWIGP). EPTCS, vol. 50, pp. 17–32 (2011)

    Google Scholar 

  37. von Neumann, J.: Probabilistic logics and the synthesis of reliable organisms from unreliable components. In: Automata Studies. Annals of Mathematics Studies, vol. 34, pp. 43–98. Princeton University Press, Princeton (1956)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baier, C., Dubslaff, C., Klüppelholz, S., Leuschner, L. (2014). Energy-Utility Analysis for Resilient Systems Using Probabilistic Model Checking. In: Ciardo, G., Kindler, E. (eds) Application and Theory of Petri Nets and Concurrency. PETRI NETS 2014. Lecture Notes in Computer Science, vol 8489. Springer, Cham. https://doi.org/10.1007/978-3-319-07734-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07734-5_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07733-8

  • Online ISBN: 978-3-319-07734-5

  • eBook Packages: Computer ScienceComputer Science (R0)