Skip to main content

Fractal Spectrum of Magnetic Minibands in Graphene-hBN Heterostructures

  • Chapter
  • First Online:
Electronic Properties of Graphene Heterostructures with Hexagonal Crystals

Part of the book series: Springer Theses ((Springer Theses))

  • 1095 Accesses

Abstract

The fractal spectrum of electrons in a crystal subjected to a strong magnetic field is one of the most spectacular results in the quantum theory of solids. The electronic band structure is fractured into multiple magnetic bands, for each magnetic field providing a rational fraction of magnetic flux quanta, \(\phi /\phi _0=p/q\), per unit cell. Since the sparsity of the spectrum increases for larger values of the denominator \(q\), the observation of fractal magnetic bands at sustainable magnetic fields requires a system with a long period superlattice, such as the graphene/boron-nitride heterostructure. Here, we find that further generations of weakly gapped Dirac electrons systematically reappear at the edges of the magnetic minibands at rational flux values. Moreover, the fractal spectra for neighbouring values of flux have the form of the Landau levels associated with these gapped Dirac electrons, which determines a specific hierarchy of gaps in the surrounding fractal spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For \(\tilde{u}_i\!=\!0\), the spatial inversion symmetry, \(H(\varvec{r},\zeta )\!=\!\sigma _zH(-\varvec{r},-\zeta )\sigma _z\), prescribes the relation \(\epsilon _{\varvec{K}_++\varvec{k}}\!=\!\epsilon _{\varvec{K}_--\varvec{k}}\) between spectra in graphene’s two valleys. For \(\phi \!=\!0\), time reversal symmetry prescribes the same relation, however when both \(\phi ,\tilde{u}_i\!\ne \!0 \) the spectra in the two valleys are unrelated.

References

  1. J. Zak, Phys. Rev. 134, A1602–A1607 (1964)

    Google Scholar 

  2. E. Brown, Phys. Rev. 133, A1038 (1964)

    Article  ADS  Google Scholar 

  3. L.D. Landau, E M. Lifshitz, Statistical Physics, vol 9, part 2, sect. 60 (Pergamon Press Ltd., Headington, 1980)

    Google Scholar 

  4. D.R. Hofstadter, Phys. Rev. B 14, 2239 (1976)

    Article  ADS  Google Scholar 

  5. D.K. Ferry, Prog. Quant. Electr. 16, 251 (1992)

    Google Scholar 

  6. C. Albrecht, J.H. Smet, D. Weiss, K. von Klitzing, R. Hennig, M. Langenbuch, M. Suhrke, U. Rössler, V. Umansky, H. Schweizer, Phys. Rev. Lett. 83, 2234 (1999)

    Google Scholar 

  7. T. Schlösser, K. Ensslin, J.P. Kotthaus, M. Holland, Europhys. Lett. 33, 683 (1996)

    Google Scholar 

  8. C. Albrecht, J.H. Smet, K. von Klitzing, D. Weiss, V. Umansky, H. Schweizer, Phys. Rev. Lett. 86, 147 (2001)

    Google Scholar 

  9. M.C. Geisler, J.H. Smet, V. Umansky, K. von Klitzing, B. Naundorf, R. Ketzmerick, H. Schweizer. Phys. Rev. Lett. 92, 256801 (2004)

    Google Scholar 

  10. A.T. NâĂŹDiaye, S. Bleikamp, P.J. Feibelman, T. Michely, Phys. Rev. Lett. 97, 215501 (2006)

    Google Scholar 

  11. S. Marchini, S. Günther, J. Wintterlin, Phys. Rev. B 76, 075429 (2007)

    Google Scholar 

  12. P. Sutter, J.T. Sadowski, E. Sutter, Phys. Rev. B 80, 245411 (2009)

    Google Scholar 

  13. M. Sicot, P. Leicht, A. Zusan, S. Bouvron, O. Zander, M. Weser, Y.S. Dedkov, K. Horn, M. Fonin, ACS Nano 6, 151 (2012)

    Google Scholar 

  14. J. Wintterlin, M.-L. Bocquet, Surf. Sci. 603, 1841 (2009)

    Google Scholar 

  15. M. Batzill. Surf. Sci. Rep. 67, 83 (2012)

    Google Scholar 

  16. L.A. Ponomarenko, R.V. Gorbachev, G.L. Yu, D.C. Elias, R. Jalil, A.A. Patel, A. Mishchenko, A.S. Mayorov, C.R. Woods, J.R. Wallbank, M. Mucha-Kruczynski, B.A. Piot, M. Potemski, I.V. Grigorieva, K.S. Novoselov, F. Guinea, V.I. Fal’ko, A.K. Geim, Nature 497, 594 (2013)

    Article  ADS  Google Scholar 

  17. C.R. Dean, L. Wang, P. Maher, C. Forsythe, F. Ghahari, Y. Gao, J. Katoch, M. Ishigami, P. Moon, M. Koshino, T. Taniguchi, K. Watanabe, K.L. Shepard, J. Hone, P. Kim, Nature 497, 598 (2013)

    Article  ADS  Google Scholar 

  18. B. Hunt, J.D. Sanchez-Yamagishi, A.F. Young, M. Yankowitz, B.J. LeRoy, K. Watanabe, T. Taniguchi, P. Moon, M. Koshino, P. Jarillo-Herrero, R.C. Ashoori, Science 340, 1427 (2013)

    Article  ADS  Google Scholar 

  19. I. Dana, J. Zak, Phys. Rev. B 32, 3612 (1985)

    Article  ADS  Google Scholar 

  20. D. Xiao, M.C. Chang, Q. Niu, Rev. Mod. Phys. 82, 1959 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. M.C. Chang, Q. Niu, Phys. Rev. Lett. 75, 1348 (1995)

    Article  ADS  Google Scholar 

  22. I. Dana, Y. Avron, J. Zak, J. Phys. C: Solid State Phys. 18, L679 (1985)

    Article  ADS  Google Scholar 

  23. D.J. Thouless, M. Kohmoto, M.P. Nightingale, M. den Nijs, Phys. Rev. Lett. 49, 405 (1982)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R. Wallbank .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wallbank, J.R. (2014). Fractal Spectrum of Magnetic Minibands in Graphene-hBN Heterostructures. In: Electronic Properties of Graphene Heterostructures with Hexagonal Crystals. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-07722-2_4

Download citation

Publish with us

Policies and ethics