Skip to main content

Monolayer Graphene on a hBN Underlay

  • Chapter
  • First Online:
  • 1150 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

This chapter provides a general phenomenological description electrons in graphene placed on substrates with the hexagonal Bravais lattice (such as hexagonal boron nitride). In particular, we identify conditions at which the first moiré miniband is separated from the rest of the spectrum by either one or a group of three isolated secondary Dirac points, and is not obscured by dispersion surfaces coming from other minibands. In such cases, the Hall coefficient exhibits two distinct alternations of its sign as a function of charge carrier density. This phenomenological analysis is complemented by microscopic calculations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The Hamiltonian in the vicinity of other two inequivalent points on the sBZ edge, \(\varvec{\mu }'=\hat{R}_{2\pi /3}\varvec{\mu }\), \(\varvec{\mu }''=\hat{R}_{4\pi /3}\varvec{\mu }\), can be obtained using \(H_{\varvec{\mu }+\varvec{q}}=H_{\varvec{\mu }'+\hat{R}_{2\pi /3}\varvec{q}}=H_{\varvec{\mu }''+\hat{R}_{4\pi /3}\varvec{q}}\).

  2. 2.

    Note that the spectra derived from \(\hat{H}_{\zeta (\varvec{\kappa }+\varvec{q})}\) obey the three-fold rotational symmetry.

  3. 3.

    In Eqs. (2.5) and (2.6) this transformation is equivalent to a gauge transform and therefore leaves the bandstructure unaltered.

References

  1. C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K.L. Shepard, J. Hone, Nat. Nano. 5, 722 (2010)

    Article  Google Scholar 

  2. J. Xue, J. Sanchez-Yamagishi, D. Bulmash, P. Jacquod, A. Deshpande, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, B.J. LeRoy, Nat. Mater. 10, 282 (2011)

    Article  ADS  Google Scholar 

  3. M.S. Bresnehan, M.J. Hollander, M. Wetherington, M. LaBella, K.A. Thurnbull, R. Cavalero, D.W. Snyder, J.A. Robinson, ACS Nano 6, 5234 (2012)

    Article  Google Scholar 

  4. R. Decker, Y. Wang, V.W. Brar, W. Regan, H.-Z. Tsai, Q. Wu, W. Gannett, A. Zettl, M.F. Crommie, Nano Lett. 11, 2291 (2011)

    Article  ADS  Google Scholar 

  5. A.S. Mayorov, R.V. Gorbachev, S.V. Morozov, L. Britnell, R. Jalil, L.A. Ponomarenko, P. Blake, K.S. Novoselov, K. Watanabe, T. Taniguchi, A.K. Geim, Nano Lett. 11, 2396 (2011)

    Article  ADS  Google Scholar 

  6. E. Kim, T. Yu, E.S. Song, B. Yu, Appl. Phys. Lett. 98, 262103 (2011)

    Article  ADS  Google Scholar 

  7. H. Wang, T. Taychatanapat, A. Hsu, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, T. Palacios, IEEE Electron Device Lett. 32, 1209 (2011)

    Article  ADS  Google Scholar 

  8. M. Yankowitz, J. Xue, D. Cormode, J.D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, P. Jacquod, B.J. LeRoy, Nat. Phys. 8, 382 (2012)

    Article  Google Scholar 

  9. C. Ortix, L. Yang, J. van den Brink, Phys. Rev. B 86, 081405 (2012)

    Article  ADS  Google Scholar 

  10. M. Kindermann, B. Uchoa, D.L. Miller, Phys. Rev. B 86, 115415 (2012)

    Article  ADS  Google Scholar 

  11. J.R. Wallbank, A.A. Patel, M. Mucha-Kruczynski, A.K. Geim, V.I. Fal’ko, Phys. Rev. B 87, 245408 (2013)

    Article  ADS  Google Scholar 

  12. C.-H. Park, L. Yang, Y.-W. Son, M.L. Cohen, S.G. Louie, Nat. Phys. 4, 213 (2008)

    Article  Google Scholar 

  13. J.M.B. Lopes dos Santos, N.M.R. Peres, A.H. Castro Neto, Phys. Rev. Lett. 99, 256802 (2007)

    Article  ADS  Google Scholar 

  14. R. Bistritzer, A.H. MacDonald, Phys. Rev. B 81, 245412 (2010)

    Article  ADS  Google Scholar 

  15. R. Bistritzer, A.H. MacDonald, Phys. Rev. B 84, 035440 (2011)

    Article  ADS  Google Scholar 

  16. J.M.B. Lopes dos Santos, N.M.R. Peres, A.H. Castro Neto, Phys. Rev. B 86, 155449 (2012)

    Google Scholar 

  17. S.V. Iordanskii, A. Koshelev, JETP Lett. 41, 574 (1985)

    ADS  Google Scholar 

  18. M.S. Foster, A.W.W. Ludwig, Phys. Rev. B 73, 155104 (2006)

    Article  ADS  Google Scholar 

  19. A.F. Morpurgo, F. Guinea, Phys. Rev. Lett. 97, 196804 (2006)

    Article  ADS  Google Scholar 

  20. J.C. Slonczewski, P.R. Weiss, Phys. Rev. 109, 272 (1958)

    Article  ADS  Google Scholar 

  21. C.-H. Park, L. Yang, Y.-W. Son, M.L. Cohen, S.G. Louie, Phys. Rev. Lett. 101, 126804 (2008)

    Article  ADS  Google Scholar 

  22. F. Guinea, T. Low, Phil. Trans. R. Soc. A 368, 5391 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. D.R. Hofstadter, Phys. Rev. B 14, 2239 (1976)

    Article  ADS  Google Scholar 

  24. G. Giovannetti, P.A. Khomyakov, G. Brocks, P.J. Kelly, J. van den Brink, Phys. Rev. B 76, 073103 (2007)

    Article  ADS  Google Scholar 

  25. M. Kindermann, P.N. First, Phys. Rev. B 83, 045425 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R. Wallbank .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wallbank, J.R. (2014). Monolayer Graphene on a hBN Underlay. In: Electronic Properties of Graphene Heterostructures with Hexagonal Crystals. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-07722-2_2

Download citation

Publish with us

Policies and ethics