Skip to main content

Short Review of Dimensionality Reduction Methods Based on Stochastic Neighbour Embedding

  • Conference paper

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 295)

Abstract

Dimensionality reduction methods aimed at preserving the data topology have shown to be suitable for reaching high-quality embedded data. In particular, those based on divergences such as stochastic neighbour embedding (SNE). The big advantage of SNE and its variants is that the neighbor preservation is done by optimizing the similarities in both high- and low-dimensional space. This work presents a brief review of SNE-based methods. Also, a comparative analysis of the considered methods is provided, which is done on important aspects such as algorithm implementation, relationship between methods, and performance. The aim of this paper is to investigate recent alternatives to SNE as well as to provide substantial results and discussion to compare them.

Keywords

  • Dimensionality reduction
  • divergences
  • similarity
  • stochastic neighbor embedding

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-07695-9_6
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-07695-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Borg, I.: Modern multidimensional scaling: Theory and applications. Springer (2005)

    Google Scholar 

  2. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation 15(6), 1373–1396 (2003)

    CrossRef  Google Scholar 

  3. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    CrossRef  Google Scholar 

  4. Hinton, G.E., Roweis, S.T.: Stochastic neighbor embedding. In: Advances in Neural Information Processing Systems, pp. 833–840 (2002)

    Google Scholar 

  5. Van der Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of Machine Learning Research 9(2579-2605), 85 (2008)

    MATH  Google Scholar 

  6. Lee, J.A., Renard, E., Bernard, G., Dupont, P., Verleysen, M.: Type 1 and 2 mixtures of kullback-leibler divergences as cost functions in dimensionality reduction based on similarity preservation. Neurocomputing (2013)

    Google Scholar 

  7. Carreira-Perpinán, M.A.: The elastic embedding algorithm for dimensionality reduction. In: ICML, vol. 10, pp. 167–174 (2010)

    Google Scholar 

  8. Durbin, R., Szeliski, R., Yuille, A.: An analysis of the elastic net approach to the traveling salesman problem. Neural Computation 1(3), 348–358 (1989)

    CrossRef  Google Scholar 

  9. Vladymyrov, M., Carreira-Perpiñán, M.Á.: Partial-hessian strategies for fast learning of nonlinear embeddings. CoRR, abs/1206.4646 (2012)

    Google Scholar 

  10. Nene, S.A., Nayar, S.K., Murase, H.: Columbia object image library (coil-20). Dept. Comput. Sci., Columbia Univ., New York, 62 (1996), http://www.cs.columbia.edu/CAVE/coil-20.html

  11. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

    CrossRef  Google Scholar 

  12. Venna, J., Peltonen, J., Nybo, K., Aidos, H., Kaski, S.: Information retrieval perspective to nonlinear dimensionality reduction for data visualization. The Journal of Machine Learning Research 11, 451–490 (2010)

    MathSciNet  MATH  Google Scholar 

  13. Nocedal, J., Wright, S.: Numerical optimization. Series in operations research and financial engineering. Springer, New York (2006)

    MATH  Google Scholar 

  14. Yu, S.X., Shi, J.: Multiclass spectral clustering. In: Proceedings of the Ninth IEEE International Conference on Computer Vision, pp. 313–319. IEEE (2003)

    Google Scholar 

  15. Singer, A., Wu, H.-T.: Vector diffusion maps and the connection Laplacian. Communications on Pure and Applied Mathematics 65(8), 1067–1144 (2012)

    MathSciNet  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego H. Peluffo-Ordóñez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Peluffo-Ordóñez, D.H., Lee, J.A., Verleysen, M. (2014). Short Review of Dimensionality Reduction Methods Based on Stochastic Neighbour Embedding. In: Villmann, T., Schleif, FM., Kaden, M., Lange, M. (eds) Advances in Self-Organizing Maps and Learning Vector Quantization. Advances in Intelligent Systems and Computing, vol 295. Springer, Cham. https://doi.org/10.1007/978-3-319-07695-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07695-9_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07694-2

  • Online ISBN: 978-3-319-07695-9

  • eBook Packages: EngineeringEngineering (R0)