Fu, T.C.: A Review on Time Series Data Mining. Engineering Applications of Artificial Intelligence 24(1), 164–181 (2011)
CrossRef
Google Scholar
Vellido, A., Martín-Guerrero, J.D., Lisboa, P.J.G.: Making Machine Learning Models Interpretable. In: ESANN 2012, pp. 163–172. d-Side Pub. (2012)
Google Scholar
Vellido, A., Martín, J.D., Rossi, F., Lisboa, P.J.G.: Seeing is Believing: The Importance of Visualization in Real-World Machine Learning Applications. In: ESANN 2011, pp. 219–226. d-Side Pub. (2011)
Google Scholar
Lee, J.A., Verleysen, M.: Nonlinear Dimensionality Reduction. Springer (2007)
Google Scholar
Van Belle, V.: Lisboa. P.: Research Directions in Interpretable Machine Learning Models. In: ESANN 2013, pp. 533–541. i6doc.com Pub. (2013)
Google Scholar
Bishop, C.M., Hinton, G.E., Strachan, I.G.D.: GTM Through Time. In: Fifth International Conference on Artificial Neural Networks, pp. 111–116 (1997)
Google Scholar
Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE 77(2), 257–286 (1989)
CrossRef
Google Scholar
Olier, I., Vellido: A Variational Formulation for GTM Through Time. In: International Joint Conference on Neural Networks (IJCNN 2008), pp. 517-522 (2008)
Google Scholar
Bishop, C.M., Svensén, M., Williams, C.K.I.: GTM: The Generative Topographic Mapping. Neural Computation 10, 215–234 (1998)
CrossRef
Google Scholar
Bishop, C.M., Svensén, M., Williams, C.K.I.: Developments of the Generative Topographic Mapping. Neurocomputing 21(1), 203–224 (1998)
CrossRef
Google Scholar
Olier, I., Vellido, A.: Variational Bayesian Generative Topographic Mapping. Journal of Mathematical Modelling and Algorithms 7(4), 371–387 (2008)
MathSciNet
CrossRef
Google Scholar
Olier, I., Amengual, J., Vellido, A.: A Variational Bayesian Approach for the Robust Estimation of Cortical Silent Periods from EMG Time Series of Brain Stroke Patients. Neurocomputing 74(9), 1301–1314 (2011)
CrossRef
Google Scholar
Bishop, C.M., Svensén, M., Williams, C.K.I.: Magnification Factors for the SOM and GTM Algorithms. In: Proceedings of the 1997 Workshop on Self-Organizing Maps (WSOM), pp. 333–338 (1997)
Google Scholar
Tosi, A., Vellido, A.: Robust Cartogram Visualization of Outliers in Manifold Learning. In: ESANN 2013, pp. 555–560. i6doc.com Pub. (2013)
Google Scholar
Lin, J., Vlachos, M., Keogh, E., Gunopulos, D.: Iterative Incremental Clustering of Time Series. In: Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 106–122. Springer, Heidelberg (2004)
CrossRef
Google Scholar
Lawrence, N.: Probabilistic Non-Linear Principal Component Analysis with Gaussian Process Latent Variable Models. The Journal of Machine Learning Research 6, 1783–1816 (2005)
MathSciNet
MATH
Google Scholar
Damianou, A.C., Titsias, M.K., Lawrence, N.D.: Variational Gaussian Process Dynamical Systems. In: Advances in Neural Information Processing Systems, NIPS (2011)
Google Scholar
Wang, J.M., Fleet, D.J., Hertzmann, A.: Gaussian Process Dynamical Models for Human Motion. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(2), 283–298 (2008)
CrossRef
Google Scholar
Lewandowski, M., Martínez-del-Rincón, J., Makris, D., Nebel, J.C.: Temporal Extension of Laplacian Eigenmaps for Unsupervised Dimensionality Reduction of Time Series. In: 20th International Conference on Pattern Recognition (ICPR), pp. 161–164. IEEE (2013)
Google Scholar
Tosi, A., Vellido, A.: Cartogram Representation of the Batch-SOM Magnification Factor. In: ESANN 2012, pp. 203–208 (2012)
Google Scholar
Vellido, A., García, D., Nebot, À.: Cartogram Visualization for Nonlinear Manifold Learning Models. Data Mining and Knowledge Discovery 27(1), 22–54 (2013)
MathSciNet
CrossRef
Google Scholar
Gianniotis, N.: Interpretable magnification factors for topographic maps of high dimensional and structured data. In: IEEE CIDM, pp. 238–245 (2013)
Google Scholar