Bagged Kernel SOM

  • Jérôme Mariette
  • Madalina Olteanu
  • Julien Boelaert
  • Nathalie Villa-Vialaneix
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 295)

Abstract

In a number of real-life applications, the user is interested in analyzing non vectorial data, for which kernels are useful tools that embed data into an (implicit) Euclidean space. However, when using such approaches with prototype-based methods, the computational time is related to the number of observations (because the prototypes are expressed as convex combinations of the original data). Also, a side effect of the method is that the interpretability of the prototypes is lost. In the present paper, we propose to overcome these two issues by using a bagging approach. The results are illustrated on simulated data sets and compared to alternatives found in the literature.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mac Donald, D., Fyfe, C.: The kernel self organising map. In: Proceedings of 4th International Conference on Knowledge-Based Intelligence Engineering Systems and Applied Technologies, pp. 317–320 (2000)Google Scholar
  2. 2.
    Lau, K., Yin, H., Hubbard, S.: Kernel self-organising maps for classification. Neurocomputing 69, 2033–2040 (2006)CrossRefGoogle Scholar
  3. 3.
    Boulet, R., Jouve, B., Rossi, F., Villa, N.: Batch kernel SOM and related laplacian methods for social network analysis. Neurocomputing 71(7-9), 1257–1273 (2008)CrossRefGoogle Scholar
  4. 4.
    Hammer, B., Hasenfuss, A.: Topographic mapping of large dissimilarity data sets. Neural Computation 22(9), 2229–2284 (2010)MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Olteanu, M., Villa-Vialaneix, N.: On-line relational and multiple relational SOM. Neurocomputing (2013) (forthcoming)Google Scholar
  6. 6.
    Olteanu, M., Villa-Vialaneix, N., Cierco-Ayrolles, C.: Multiple kernel self-organizing maps. In: Verleysen, M. (ed.) XXIst European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), Bruges, Belgium, pp. 83–88. i6doc.com (2013)Google Scholar
  7. 7.
    Massoni, S., Olteanu, M., Villa-Vialaneix, N.: Which distance use when extracting typologies in sequence analysis? An application to school to work transitions. In: International Work Conference on Artificial Neural Networks (IWANN 2013), Puerto de la Cruz, Tenerife (2013)Google Scholar
  8. 8.
    Hofmann, D., Hammer, B.: Sparse approximations for kernel learning vector quantization. In: Verleysen, M. (ed.) Proceedings of XXIst European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), Bruges, Belgium, pp. 549–554. i6doc.com (2013)Google Scholar
  9. 9.
    Aronszajn, N.: Theory of reproducing kernels. Transactions of the American Mathematical Society 68(3), 337–404 (1950)MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Smola, A.J., Kondor, R.: Kernels and regularization on graphs. In: Schölkopf, B., Warmuth, M.K. (eds.) COLT/Kernel 2003. LNCS (LNAI), vol. 2777, pp. 144–158. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Petrakieva, L., Fyfe, C.: Bagging and bumping self organising maps. Computing and Information Systems Journal 9, 69–77 (2003)Google Scholar
  12. 12.
    Vrusias, B., Vomvoridis, L., Gillam, L.: Distributing SOM ensemble training using grid middleware. In: Proceedings of IEEE International Joint Conference on Neural Networks (IJCNN 2007), pp. 2712–2717 (2007)Google Scholar
  13. 13.
    Baruque, B., Corchado, E.: Fusion methods for unsupervised learning ensembles. SCI, vol. 322. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Villa, N., Rossi, F.: A comparison between dissimilarity SOM and kernel SOM for clustering the vertices of a graph. In: 6th International Workshop on Self-Organizing Maps (WSOM), Bielefield, Germany, Neuroinformatics Group, Bielefield University (2007)Google Scholar
  15. 15.
    Polzlbauer, G.: Survey and comparison of quality measures for self-organizing maps. In: Paralic, J., Polzlbauer, G., Rauber, A. (eds.) Proceedings of the Fifth Workshop on Data Analysis (WDA 2004), Sliezsky dom, Vysoke Tatry, Slovakia, pp. 67–82. Elfa Academic Press (2004)Google Scholar
  16. 16.
    McAuley, J., Leskovec, J.: Learning to discover social circles in ego networks. In: NIPS Workshop on Social Network and Social Media Analysis (2012)Google Scholar
  17. 17.
    Rossi, F., Villa-Vialaneix, N.: Optimizing an organized modularity measure for topographic graph clustering: a deterministic annealing approach. Neurocomputing 73(7-9), 1142–1163 (2010)CrossRefGoogle Scholar
  18. 18.
    Fouss, F., Pirotte, A., Renders, J., Saerens, M.: Random-walk computation of similarities between nodes of a graph, with application to collaborative recommendation. IEEE Transactions on Knowledge and Data Engineering 19(3), 355–369 (2007)CrossRefGoogle Scholar
  19. 19.
    von Luxburg, U.: A tutorial on spectral clustering. Statistics and Computing 17(4), 395–416 (2007)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Danon, L., Diaz-Guilera, A., Duch, J., Arenas, A.: Comparing community structure identification. Journal of Statistical Mechanics, P09008 (2005)Google Scholar
  21. 21.
    Newman, M., Girvan, M.: Finding and evaluating community structure in networks. Physical Review, E 69, 026113 (2004)CrossRefGoogle Scholar
  22. 22.
    Fruchterman, T., Reingold, B.: Graph drawing by force-directed placement. Software, Practice and Experience 21, 1129–1164 (1991)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Jérôme Mariette
    • 1
  • Madalina Olteanu
    • 2
  • Julien Boelaert
    • 2
  • Nathalie Villa-Vialaneix
    • 1
    • 2
    • 3
  1. 1.INRA, UR 0875 MIA-TCastanet Tolosan cedexFrance
  2. 2.SAMM, Université Paris 1 Panthéon-SorbonneParis cedex 13France
  3. 3.UPVDPerpignan cedex 9France

Personalised recommendations