Abstract
Prototype-based models such as learning vector quantization (LVQ) enjoy a wide popularity because they combine excellent classification and generalization ability with an intuitive learning paradigm: models are represented by few characteristic prototypes, the latter often being located at class typical positions in the data space. In this article we investigate inhowfar these expectations are actually met by modern LVQ schemes such as robust soft LVQ and generalized LVQ. We show that the mathematical models do not explicitly optimize the objective to find representative prototypes. We demonstrate this fact in a few benchmarks. Further, we investigate the behavior of the models if this objective is explicitly formalized in the mathematical costs. This way, a smooth transition of the two partially contradictory objectives, discriminative power versus model representativity, can be obtained.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Biehl, M., Ghosh, A., Hammer, B.: Dynamics and generalization ability of LVQ algorithms. Journal of Machine Learning Research 8, 323–360 (2007)
Biehl, M., Hammer, B., Schneider, P., Villmann, T.: Metric learning for prototype based classification. In: Bianchini, M., Maggini, M., Scarselli, F. (eds.) Innovations in Neural Information – Paradigms and Applications. SCI, vol. 247, pp. 183–199. Springer, Heidelberg (2009)
Crammer, K., Gilad-Bachrach, R., Navot, A., Tishby, A.: Margin analysis of the lvq algorithm. In: Advances in Neural Information Processing Systems, vol. 15, pp. 462–469. MIT Press, Cambridge (2003)
Hammer, B., Mokbel, B., Schleif, F.-M., Zhu, X.: White box classification of dissimilarity data. In: Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Graña, M., Cho, S.-B. (eds.) HAIS 2012, Part III. LNCS, vol. 7208, pp. 309–321. Springer, Heidelberg (2012)
Hammer, B., Schleif, F.-M., Villmann, T.: On the generalization ability of prototype-based classifiers with local relevance determination (2005)
Hammer, B., Strickert, M., Villmann, T.: Supervised neural gas with general similarity measure. Neural Processing Letters 21(1), 21–44 (2005)
Hammer, B., Villmann, T.: Generalized relevance learning vector quantization. Neural Networks 15(8-9), 1059–1068 (2002)
Kirstein, S., Wersing, H., Körner, E.: A biologically motivated visual memory architecture for online learning of objects. Neural Networks 21(1), 65–77 (2008)
Kohonen, T.: The self-organizing map. Proc. of the IEEE 78(9), 1464–1480 (1990)
D. of Statistics at Carnegie Mellon University, http://lib.stat.cmu.edu/datasets/
Qin, A.K., Suganthan, P.N.: A novel kernel prototype-based learning algorithm. In: ICPR (4), pp. 621–624 (2004)
Sato, A., Yamada, K.: Generalized learning vector quantization. In: Touretzky, M.C.M.D.S., Hasselmo, M.E. (eds.) Proceedings of the 1995 Conference on Advances in Neural Information Processing Systems 8, pp. 423–429. MIT Press, Cambridge (1996)
Schneider, P., Biehl, M., Hammer, B.: Adaptive relevance matrices in learning vector quantization. Neural Computation 21, 3532–3561 (2009)
Schneider, P., Biehl, M., Hammer, B.: Distance learning in discriminative vector quantization. Neural Computation 21, 2942–2969 (2009)
Seo, S., Bode, M., Obermayer, K.: Soft nearest prototype classification. IEEE Transactions on Neural Networks 14, 390–398 (2003)
Seo, S., Obermayer, K.: Soft learning vector quantization. Neural Computation 15(7), 1589–1604 (2003)
Villmann, T., Haase, S.: Divergence-based vector quantization. Neural Computation 23(5), 1343–1392 (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Hammer, B., Nebel, D., Riedel, M., Villmann, T. (2014). Generative versus Discriminative Prototype Based Classification. In: Villmann, T., Schleif, FM., Kaden, M., Lange, M. (eds) Advances in Self-Organizing Maps and Learning Vector Quantization. Advances in Intelligent Systems and Computing, vol 295. Springer, Cham. https://doi.org/10.1007/978-3-319-07695-9_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-07695-9_12
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-07694-2
Online ISBN: 978-3-319-07695-9
eBook Packages: EngineeringEngineering (R0)