Skip to main content

Generative versus Discriminative Prototype Based Classification

  • Conference paper

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 295))

Abstract

Prototype-based models such as learning vector quantization (LVQ) enjoy a wide popularity because they combine excellent classification and generalization ability with an intuitive learning paradigm: models are represented by few characteristic prototypes, the latter often being located at class typical positions in the data space. In this article we investigate inhowfar these expectations are actually met by modern LVQ schemes such as robust soft LVQ and generalized LVQ. We show that the mathematical models do not explicitly optimize the objective to find representative prototypes. We demonstrate this fact in a few benchmarks. Further, we investigate the behavior of the models if this objective is explicitly formalized in the mathematical costs. This way, a smooth transition of the two partially contradictory objectives, discriminative power versus model representativity, can be obtained.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Biehl, M., Ghosh, A., Hammer, B.: Dynamics and generalization ability of LVQ algorithms. Journal of Machine Learning Research 8, 323–360 (2007)

    MathSciNet  MATH  Google Scholar 

  2. Biehl, M., Hammer, B., Schneider, P., Villmann, T.: Metric learning for prototype based classification. In: Bianchini, M., Maggini, M., Scarselli, F. (eds.) Innovations in Neural Information – Paradigms and Applications. SCI, vol. 247, pp. 183–199. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Crammer, K., Gilad-Bachrach, R., Navot, A., Tishby, A.: Margin analysis of the lvq algorithm. In: Advances in Neural Information Processing Systems, vol. 15, pp. 462–469. MIT Press, Cambridge (2003)

    MATH  Google Scholar 

  4. Hammer, B., Mokbel, B., Schleif, F.-M., Zhu, X.: White box classification of dissimilarity data. In: Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Graña, M., Cho, S.-B. (eds.) HAIS 2012, Part III. LNCS, vol. 7208, pp. 309–321. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  5. Hammer, B., Schleif, F.-M., Villmann, T.: On the generalization ability of prototype-based classifiers with local relevance determination (2005)

    Google Scholar 

  6. Hammer, B., Strickert, M., Villmann, T.: Supervised neural gas with general similarity measure. Neural Processing Letters 21(1), 21–44 (2005)

    Article  Google Scholar 

  7. Hammer, B., Villmann, T.: Generalized relevance learning vector quantization. Neural Networks 15(8-9), 1059–1068 (2002)

    Article  Google Scholar 

  8. Kirstein, S., Wersing, H., Körner, E.: A biologically motivated visual memory architecture for online learning of objects. Neural Networks 21(1), 65–77 (2008)

    Article  Google Scholar 

  9. Kohonen, T.: The self-organizing map. Proc. of the IEEE 78(9), 1464–1480 (1990)

    Article  Google Scholar 

  10. D. of Statistics at Carnegie Mellon University, http://lib.stat.cmu.edu/datasets/

  11. Qin, A.K., Suganthan, P.N.: A novel kernel prototype-based learning algorithm. In: ICPR (4), pp. 621–624 (2004)

    Google Scholar 

  12. Sato, A., Yamada, K.: Generalized learning vector quantization. In: Touretzky, M.C.M.D.S., Hasselmo, M.E. (eds.) Proceedings of the 1995 Conference on Advances in Neural Information Processing Systems 8, pp. 423–429. MIT Press, Cambridge (1996)

    Google Scholar 

  13. Schneider, P., Biehl, M., Hammer, B.: Adaptive relevance matrices in learning vector quantization. Neural Computation 21, 3532–3561 (2009)

    Article  MathSciNet  Google Scholar 

  14. Schneider, P., Biehl, M., Hammer, B.: Distance learning in discriminative vector quantization. Neural Computation 21, 2942–2969 (2009)

    Article  MathSciNet  Google Scholar 

  15. Seo, S., Bode, M., Obermayer, K.: Soft nearest prototype classification. IEEE Transactions on Neural Networks 14, 390–398 (2003)

    Article  Google Scholar 

  16. Seo, S., Obermayer, K.: Soft learning vector quantization. Neural Computation 15(7), 1589–1604 (2003)

    Article  Google Scholar 

  17. Villmann, T., Haase, S.: Divergence-based vector quantization. Neural Computation 23(5), 1343–1392 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Hammer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Hammer, B., Nebel, D., Riedel, M., Villmann, T. (2014). Generative versus Discriminative Prototype Based Classification. In: Villmann, T., Schleif, FM., Kaden, M., Lange, M. (eds) Advances in Self-Organizing Maps and Learning Vector Quantization. Advances in Intelligent Systems and Computing, vol 295. Springer, Cham. https://doi.org/10.1007/978-3-319-07695-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07695-9_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07694-2

  • Online ISBN: 978-3-319-07695-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics