Skip to main content

A Comparative Evaluation of State-of-the-Art Cloud Migration Optimization Approaches

  • Conference paper
  • 1505 Accesses

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 287)

Abstract

Cloud computing has become more attractive for consumers to migrate their applications to the cloud environment. However, because of huge cloud environments, application customers and providers face the problem of how to assess and make decisions to choose appropriate service providers for migrating their applications to the cloud. Many approaches have investigated how to address this problem. In this paper we classify these approaches into non-evolutionary cloud migration optimization approaches and evolutionary cloud migration optimization approaches. Criteria including cost, QoS, elasticity and degree of migration optimization have been used to compare the approaches. Analysis of the results of comparative evaluations shows that a Multi-Objectives optimization approach provides a better solution to support decision making to migrate an application to the cloud environment based on the significant proposed criteria. The classification of the investigated approaches will help practitioners and researchers to deliver and build solid approaches.

Keywords

  • Cloud computing
  • application migration
  • optimization
  • evolutionary algorithms

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Liu, T., Lu, T., Wang, W., Wang, Q., Liu, Z., Gu, N., Ding, X.: SDMS-O: A service deployment management system for optimization in clouds while guaranteeing users’ QoS requirements. Future Gener. Comput. Syst. 28, 1100–1109 (2012)

    CrossRef  Google Scholar 

  2. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future Generation Computer Systems 25, 599–616 (2009)

    CrossRef  Google Scholar 

  3. Marios, D.D., Dimitrios, K., Pankaj, M., George, P., Athena, V.: Cloud Computing: Distributed Internet Computing for IT and Scientific Research. In: Dimitrios, K., Pankaj, M., George, P., Athena, V. (eds.) IEEE Internet Computing, vol. 13, pp. 10–13 (2009)

    Google Scholar 

  4. Wikipedia, http://en.wikipedia.org/wiki/Cloud_computing

  5. Frey, S., Fittkau, F., Hasselbring, W.: Search-based genetic optimization for deployment and reconfiguration of software in the cloud. In: Proceedings of the 2013 International Conference on Software Engineering, pp. 512–521. IEEE Press, San Francisco (2013)

    Google Scholar 

  6. Marston, S., Li, Z., Bandyopadhyay, S., Zhang, J., Ghalsasi, A.: Cloud computing — The business perspective. Decision Support Systems 51, 176–189 (2011)

    CrossRef  Google Scholar 

  7. Frey, S., Hasselbring, W.: The CloudMIG Approach: Model-Based Migration of Software Systems to Cloud-Optimized Applications. International Journal on Advances in Software, 342–353 (2011)

    Google Scholar 

  8. Grundy, J., Kaefer, G., Keong, J., Liu, A.: Guest Editors’ Introduction: Software Engineering for the Cloud. IEEE Software 29, 26–29 (2012)

    CrossRef  Google Scholar 

  9. Canfora, G., Penta, M.D., Esposito, R., Villani, M.L.: An approach for QoS-aware service composition based on genetic algorithms. In: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation, pp. 1069–1075. ACM, Washington DC (2005)

    CrossRef  Google Scholar 

  10. Wada, H., Suzuki, J., Yamano, Y., Oba, K.: Evolutionary deployment optimization for service-oriented clouds. Softw. Pract. Exper. 41, 469–493 (2011)

    CrossRef  Google Scholar 

  11. Ghosh, A.: Evolutionary algorithms for multi-criterion optimization: a survey. International Journal of Computer & Information Sciences (2004)

    Google Scholar 

  12. Frey, S., Hasselbring, W.: An Extensible Architecture for Detecting Violations of a Cloud Environment’s Constraints during Legacy Software System Migration. In: 15th European Conference on Software Maintenance and Reengineering (CSMR), pp. 269–278 (2011)

    Google Scholar 

  13. Chen, T., Bahsoon, R., Theodoropoulos, G.: Dynamic QoS Optimization Architecture for Cloud-based DDDAS. Procedia Computer Science 18, 1881–1890 (2013)

    CrossRef  Google Scholar 

  14. Ghanbari, H., Simmons, B., Litoiu, M., Iszlai, G.: Feedback-based optimization of a private cloud. Future Generation Computer Systems 28, 104–111 (2012)

    CrossRef  Google Scholar 

  15. Li, H., Casale, G., Ellahi, T.: SLA-driven planning and optimization of enterprise applications. In: Proceedings of the First Joint WOSP/SIPEW International Conference on Performance Engineering, pp. 117–128. ACM, San Jose (2010)

    CrossRef  Google Scholar 

  16. Li, J., Chinneck, J., Woodside, M., Litoiu, M., Iszlai, G.: Performance model driven QoS guarantees and optimization in clouds. In: Proceedings of the 2009 ICSE Workshop on Software Engineering Challenges of Cloud Computing, pp. 15–22. IEEE Computer Society (2009)

    Google Scholar 

  17. Pooyan, J.: Cloud Migration Research: A Systematic Review. IEEE Transactions on Cloud Computing 99, 1 (2013)

    Google Scholar 

  18. Ferrer, A.J., Hernández, F., Tordsson, J., Elmroth, E., Ali-Eldin, A., Zsigri, C., Sirvent, R., Guitart, J., Badia, R.M., Djemame, K., Ziegler, W., Dimitrakos, T., Nair, S.K., Kousiouris, G., Konstanteli, K., Varvarigou, T., Hudzia, B., Kipp, A., Wesner, S., Corrales, M., Forgó, N., Sharif, T., Sheridan, C.: OPTIMIS: A holistic approach to cloud service provisioning. Future Generation Computer Systems 28, 66–77 (2012)

    CrossRef  Google Scholar 

  19. Fittkau, F., Frey, S., Hasselbring, W.: CDOSim: Simulating cloud deployment options for software migration support. In: IEEE 6th International Workshop on the Maintenance and Evolution of Service-Oriented and Cloud-Based Systems (MESOCA), pp. 37–46 (2012)

    Google Scholar 

  20. Menzel, M., Ranjan, R.: CloudGenius: Decision Support for Web Server Cloud Migration. In: Proceedings of the 21st International Conference on World Wide Web. eprint arXiv:1203.3997 (2012)

    Google Scholar 

  21. Harman, M.: The Current State and Future of Search Based Software Engineering. In: Future of Software Engineering, FOSE 2007, pp. 342–357 (2007)

    Google Scholar 

  22. White, D.R.: Cloud Computing and SBSE. In: Ruhe, G., Zhang, Y. (eds.) SSBSE 2013. LNCS, vol. 8084, pp. 16–18. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  23. Harman, M.: Software Engineering Meets Evolutionary Computation. Computer 44, 31–39 (2011)

    CrossRef  Google Scholar 

  24. Harman, M., Lakhotia, K., Singer, J., White, D.R., Yoo, S.: Cloud engineering is Search Based Software Engineering too. Journal of Systems and Software 86, 2225–2241 (2013)

    CrossRef  Google Scholar 

  25. Pandey, S., Linlin, W., Guru, S.M., Buyya, R.: A Particle Swarm Optimization-Based Heuristic for Scheduling Workflow Applications in Cloud Computing Environments. In: 24th IEEE International Conference on Advanced Information Networking and Applications (AINA), pp. 400–407 (2010)

    Google Scholar 

  26. Csorba, M.J., Meling, H., Heegaard, P.E.: Ant system for service deployment in private and public clouds. In: Proceedings of the 2nd Workshop on Bio-Inspired Algorithms for Distributed Systems, pp. 19–28. ACM, Washington, DC (2010)

    CrossRef  Google Scholar 

  27. Yusoh, Z.I.M., Maolin, T.: Composite SaaS Placement and Resource Optimization in Cloud Computing Using Evolutionary Algorithms. In: IEEE 5th International Conference on Cloud Computing (CLOUD), pp. 590–597 (2012)

    Google Scholar 

  28. Andrikopoulos, V., Binz, T., Leymann, F., Strauch, S.: How to adapt applications for the Cloud environment. Computing 95, 493–535 (2013)

    CrossRef  Google Scholar 

  29. Badger, M.L., Grance, T., Patt-Corner, R., Voas, J.M.: Cloud Computing Synopsis and Recommendations. NIST Special (2012)

    Google Scholar 

  30. Tran, V., Keung, J., Liu, A., Fekete, A.: Application migration to cloud: a taxonomy of critical factors. In: Proceedings of the 2nd International Workshop on Software Engineering for Cloud Computing, pp. 22–28. ACM Press, Waikiki (2011)

    CrossRef  Google Scholar 

  31. Andrikopoulos, V., Strauch, S., Leymann, F.: Decision Support for Application Migration to the Cloud: Challenges and Vision. In: Proceedings of the 3rd International Conference on Cloud Computing and Service Science, pp. 149–155. SciTePress (2013)

    Google Scholar 

  32. Brebner, P., Liu, A.: Performance and Cost Assessment of Cloud Services. In: Maximilien, E.M., Rossi, G., Yuan, S.-T., Ludwig, H., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6568, pp. 39–50. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  33. Emeakaroha, V.C., Netto, M.A.S., Calheiros, R.N., Brandic, I., Buyya, R., De Rose, C.A.F.: Towards autonomic detection of SLA violations in Cloud infrastructures. Future Generation Computer Systems 28, 1017–1029 (2012)

    CrossRef  Google Scholar 

  34. Tušar, T., Filipič, B.: Differential Evolution versus Genetic Algorithms in Multiobjective Optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 257–271. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  35. dos Santos Amorim, E.P., Xavier, C.R., Campos, R.S., dos Santos, R.W.: Comparison between Genetic Algorithms and Differential Evolution for Solving the History Matching Problem. In: Murgante, B., Gervasi, O., Misra, S., Nedjah, N., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2012, Part I. LNCS, vol. 7333, pp. 635–648. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  36. Dong, X.-L., Liu, S.-Q., Tao, T., Li, S.-P., Xin, K.-L.: A comparative study of differential evolution and genetic algorithms for optimizing the design of water distribution systems. J. Zhejiang Univ. Sci. A 13, 674–686 (2012)

    CrossRef  Google Scholar 

  37. Das, S., Suganthan, P.N.: Differential Evolution: A Survey of the State-of-the-Art. IEEE Transactions on Evolutionary Computation 15, 4–31 (2011)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelzahir Abdelmaboud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Abdelmaboud, A., Jawawi, D.N.A., Ghani, I., Elsafi, A. (2014). A Comparative Evaluation of State-of-the-Art Cloud Migration Optimization Approaches. In: Herawan, T., Ghazali, R., Deris, M. (eds) Recent Advances on Soft Computing and Data Mining. Advances in Intelligent Systems and Computing, vol 287. Springer, Cham. https://doi.org/10.1007/978-3-319-07692-8_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07692-8_60

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07691-1

  • Online ISBN: 978-3-319-07692-8

  • eBook Packages: EngineeringEngineering (R0)