Advertisement

A Legendre Approximation for Solving a Fuzzy Fractional Drug Transduction Model into the Bloodstream

  • Ali Ahmadian
  • Norazak Senu
  • Farhad Larki
  • Soheil Salahshour
  • Mohamed Suleiman
  • Md. Shabiul Islam
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 287)

Abstract

While an increasing number of fractional order integrals and differential equations applications have been reported in the physics, signal processing, engineering and bioengineering literatures, little attention has been paid to this class of models in the pharmacokinetics-pharmacodynamic (PKPD) literature. In this research, we are confined with the application of Legendre operational matrix for solving fuzzy fractional differential equation arising in the drug delivery model into the bloodstream. The results illustrates the effectiveness of the method which can be in high agreement with the exact solution.

Keywords

Fuzzy fractional differential equations Drug delivery process Legendre polynomials Operational matrix 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Oldham, K.B., Spainer, J.: The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order. Academic Press, New York (1974)Google Scholar
  2. 2.
    Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)Google Scholar
  3. 3.
    Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)Google Scholar
  4. 4.
    Hilfer, R.: Application of Fractional Calculus in Physics. World Scientific, Singapore (2000)Google Scholar
  5. 5.
    Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus Models and Numerical Methods. World Scientific Publishing Company (2012)Google Scholar
  6. 6.
    Golmankhaneh, A.K., Yengejeh, A.M., Baleanu, D.: On the fractional Hamilton and Lagrange mechanics. International Journal of Theoretical Physics 51, 2909–2916 (2012)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Lim, S.C., Eab, C.H., Mak, K.H., Li, M., Chen, S.Y.: Solving linear coupled fractional differential equations by direct operationalmethod and some applications. Mathematical Problems in Engineering 2012, 1–28 (2012)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Pedas, A., Tamme, E.: On the convergence of spline collocation methods for solving fractional differential equations. Journal of Computational and Applied Mathematics 235, 3502–3514 (2011)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Jiang, W.H.: Solvability for a coupled system of fractional differential equations at resonance. Nonlinear Analysis: Real World Applications 13, 2285–2292 (2012)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Jiang, H., Liu, F., Turner, I., Burrage, K.: Analytical solutions for the multi-term time-space Caputo–Riesz fractional advection–diffusion equationson a finite domain. J. Math. Anal. Appl. 389, 1117–1127 (2012)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Jiang, H., Liu, F., Turner, I., Burrage, K.: Analytical solutions for the generalized multi-term time-fractional diffusion-wave/diffusion equation in a finite domain. Comput. Math. Appl. 64, 3377–3388 (2012)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Momani, S., Shawagfeh, N.T.: Decomposition method for solving fractional Riccati differential equations. Appl. Math. Comput. 182, 1083–1092 (2006)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Song, L., Wang, W.: A new improved Adomian decomposition method and its application to fractional differential equations. Appl. Math. Model. 37, 1590–1598 (2013)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Odibat, Z., Momani, S., Xu, H.: A reliable algorithm of homotopy analysis method for solving nonlinear fractional differential equations. Appl. Math. Model. 34, 593–600 (2010)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Hashim, I., Abdulaziz, O., Momeni, S.: Homotopy analysis method for fractional IVPs. Commun. Nonlinear. Sci. Numer. Simul. 14, 674–684 (2009)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Doha, E.H., Bhrawy, A.H., Ezz-Eldien, S.S.: Efficient Chebyshev spectral methods for solving multi-term fractional orders differential equations. Appl. Math. Model. 35, 5662–5672 (2011)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Bhrawy, A.H., Alofi, A.S., Ezz-Eldien, S.S.: A quadrature tau method for variable coefficients fractional differential equations. Appl. Math. Lett. 24, 2146–2152 (2011)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Saadatmandi, A., Dehghan, M.: A new operational matrix for solving fractional-order differential equations. Comput. Math. Appl. 59, 1326–1336 (2010)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Doha, E.H., Bhrawy, A.H., Ezz-Eldien, S.S.: A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order. Comput. Math. Appl. 62, 2364–2373 (2011)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Agarwal, R.P., Lakshmikantham, V., Nieto, J.J.: On the concept of solution for fractional differential equations with uncertainty. Nonlinear Anal. 72, 2859–2862 (2010)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Allahviranloo, T., Salahshour, S., Abbasbandy, S.: Explicit solutions of fractional differential equations with uncertainty. Soft Comput. 16, 297–302 (2012)CrossRefMATHGoogle Scholar
  22. 22.
    Allahviranloo, T., Gouyandeh, Z., Armand, A.: Fuzzy fractional differential equations under generalized fuzzy Caputo derivative. J. Intelligent and Fuzzy Systems (2013), doi:10.3233/IFS-130831Google Scholar
  23. 23.
    Salahshour, S., Allahviranloo, T., Abbasbandy, S., Baleanu, D.: Existence and uniqueness results for fractional differential equations with uncertainty. Advances in Difference Equations 2012, 112 (2012)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Salahshour, S., Allahviranloo, T., Abbasbandy, S.: Solving fuzzy fractional differential equations by fuzzy Laplace transforms. Commun. Nonlinear. Sci. Numer. Simulat. 17, 1372–1381 (2012)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Ahmadian, A., Suleiman, M., Salahshour, S., Baleanu, D.: A Jacobi operational matrix for solving fuzzy linear fractional differential equation. Adv. Difference Equ. 2013, 104 (2013)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Ahmadian, A., Suleiman, M., Salahshour, S.: An Operational Matrix Based on Legendre Polynomials for Solving Fuzzy Fractional-Order Differential Equations. Abstract and Applied Analysis 2013, Article ID 505903, 29 pages (2013)Google Scholar
  27. 27.
    Balooch Shahriyar, M.R., Ismail, F., Aghabeigi, S., Ahmadian, A., Salahshour, S.: An Eigenvalue-Eigenvector Method for Solving a System of Fractional Differential Equations with Uncertainty. Mathematical Problems in Engineering 2013, Article ID 579761, 11 pages (2013)Google Scholar
  28. 28.
    Ghaemi, F., Yunus, R., Ahmadian, A., Salahshour, S., Suleiman, M., Faridah Saleh, S.: Application of Fuzzy Fractional Kinetic Equations to Modelling of the Acid Hydrolysis Reaction. Abstract and Applied Analysis 2013, Article ID 610314, 19 pages (2013)Google Scholar
  29. 29.
    Ahmadian, A., Senu, N., Larki, F., Salahshour, S., Suleiman, M., Shabiul Islam, M.: Numerical solution of fuzzy fractional pharmacokinetics model arising from drug assimilation into the blood stream. Abstract and Applied Analysis 2013, Article ID 304739 (2013)Google Scholar
  30. 30.
    Mazandarani, M., Vahidian Kamyad, A.: Modified fractional Euler method for solving Fuzzy Fractional Initial Value Problem. Commun. Nonlinear Sci. Numer. Simulat. 18, 12–21 (2013)CrossRefMATHGoogle Scholar
  31. 31.
    Mazandarani, M., Najariyan, M.: Type-2 Fuzzy Fractional Derivatives. Commun. Nonlinear Sci. Numer. Simulat. (2013), doi:10.1016/j.cnsns.2013.11.003Google Scholar
  32. 32.
    Wu, H.C.: The improper fuzzy Riemann integral and its numerical integration. Information Science 111, 109–137 (1999)CrossRefGoogle Scholar
  33. 33.
    Dubios, D., Prade, H.: Towards fuzzy differential calculus-part3. Fuzzy Sets and Systems 8, 225–234 (1982)CrossRefMathSciNetGoogle Scholar
  34. 34.
    Anastassiou, G.A.: Fuzzy Mathematics: Approximation Theory. STUDFUZZ, vol. 251. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  35. 35.
    Anastassiou, G.A., Gal, S.: On a fuzzy trigonometric approximation theorem of Weierstrass-type. J. Fuzzy Math. 9, 701–708 (2001)MATHMathSciNetGoogle Scholar
  36. 36.
    Chalco-Cano, Y., Román-Flores, H.: On new solutions of fuzzy differential equations. Chaos, Solitons & Fractals 38, 112–119 (2008)CrossRefMATHMathSciNetGoogle Scholar
  37. 37.
    Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods in Fluid Dynamics. Springer, New York (1989)Google Scholar
  38. 38.
    Bonate, P.L.: Pharmacokinetic-pharmacodynamic modeling and simulation. Springer (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ali Ahmadian
    • 1
  • Norazak Senu
    • 1
  • Farhad Larki
    • 2
  • Soheil Salahshour
    • 3
  • Mohamed Suleiman
    • 1
  • Md. Shabiul Islam
    • 2
  1. 1.Institute for Mathematical Research (INSPEM)Universiti Putra Malaysia, UPMSerdangMalaysia
  2. 2.Institute of Microengineering and Nanoelectronics (IMEN)Universiti Kebangsan Malaysia (UKM)BangiMalaysia
  3. 3.Young Researchers and Elite Club, Mobarakeh BranchIslamic Azad UniversityMobarakehIran

Personalised recommendations