Multi-Objective Particle Swarm Optimization for Optimal Planning of Biodiesel Supply Chain in Malaysia

  • Maryam Valizadeh
  • S. Syafiie
  • I. S. Ahamad
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 287)

Abstract

In this paper we develop a mathematical model for optimal planning of the biofuel supply chain. The model considers the optimal selection of feedstock while minimizing the total cost and social impact over the planning horizon. A multi-objective linear programming model (MOLP) is proposed to find the optimal solution. A multi-objective particle swarm optimization (MOPSO) method is applied to solve the mathematical model and it is compared with non-dominated sorting genetic algorithm (NSGA-II) . The model is used to evaluate the biodiesel production from palm oil and jatropha in Malaysia.

Keywords

Multi-objective optimization MOLP MOPSO NSGA-II Biofuel supply chain Biodiesel Palm oil Jatropha 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aguilar, J.E.S., Campos, J.B.G., Ortega, J.M.P., Gonzalez, M.S., El-Halwagi, M.M.: Optimal Planning of a Biomass Conversion System Considering Economic and Environmental Aspects. Industrial and Engineering Chemistry Research 50, 8558–8570 (2011)CrossRefGoogle Scholar
  2. 2.
    An, H., Wilhelm, W.E., Searcy, S.W.: Biofuel and Petroleum-based Fuel Supply Chain Research: A Literature Review. Biomass and Bioenergy 35, 3763–3774 (2011)CrossRefGoogle Scholar
  3. 3.
    Silva, L.A.W., Coelho, L.S.: An Adaptive Particle Swarm Approach Applied to Optimization of a Simplified Supply Chain. In: 19th International Conference on Production ResearchGoogle Scholar
  4. 4.
    Coello, C.A.C.: A Comprehensive Survey of Evolutionary-Based Multiobjective Optimization Techniques. Knowledge and Information Systems 1, 269–308 (1999)CrossRefGoogle Scholar
  5. 5.
    Kennedy, J., Eberhart, R.C.: Particle Swarm Optimization. In: Proceeding of International Conference on Neural Networks, pp. 1942–1948. IEEE, Perth (1995)Google Scholar
  6. 6.
    Lee, K.Y., Park, J.B.: Application of Particle Swarm Optimization to Economic Dispatch Problem:Advantages and Disadvantages, pp. 188–192. IEEE (2006)Google Scholar
  7. 7.
    Bruglieri, M., Liberti, L.: Optimal Running and Planning of a Biomass-based Energy Production Process (2008)Google Scholar
  8. 8.
    Tran, N., Illukpitiya, P., Yanagida, J.F., Ogoshi, R.: Optimizing Biofuel Production:An Economic Analysis for Selected Biofuel Feedstock Production in Hawaii. Biomass and Bioenergy 35, 1756–1764 (2011)CrossRefGoogle Scholar
  9. 9.
    Mele, F.D., Kostin, A.M., Gosalbez, G.G., Jimenez, L.: Multiobjective Model for More Sustainable Fuel Supply Chains. A Case Study of Sugar Cane Industry in Argentina. Industrial and Engineering Chemistry Research 50, 4939–4958 (2011)Google Scholar
  10. 10.
    You, F., Wang, B.: Life Cycle Optimization of Biomass-to-Liquids Supply Chains with Distributed-Centralized Processing Networks. Submitted Manuscript to Industrial & Engineering Chemistry Research (2011)Google Scholar
  11. 11.
    Cagnina, L., Esquivel, S., Coello, C.A.C.: A Particle Swarm Optimizer for Multi-Objective Optimization. JCS&T 5(4), 204–210 (2005)Google Scholar
  12. 12.
    Gui, M.M., Lee, K.T., Bhatia, S.: Feasibility of Edible Oil vs. Non-edible Oil vs. Waste Edible Oil as Biodiesel Feedstock. Energy 33, 1646–1653 (2008)CrossRefGoogle Scholar
  13. 13.
    Agarwal, A.K., Das, L.M.: Biodiesel Development and Characterization for Use as a Fuel in Compression Ignition Engines. Journal of Engineering for Gas Turbines an Power 123, 440–447 (2001)CrossRefGoogle Scholar
  14. 14.
    Lam, M.K., Tan, K.T., Lee, K.T., Mohamed, A.R.: Malaysian Palm Oil: Surviving the Food versus Fuel Dispute for a Sustainable Future. Renewable & Sustainable Energy Reviews 13, 1456–1464 (2009)CrossRefGoogle Scholar
  15. 15.
    Divakara, B.N., Upadhyaya, H.D., Wani, S.P., Gowda, C.L.L.: Biology and Genetic Improvement of Jatropha Curcas L.: A Review. Applied Energy 87, 732–742 (2010)CrossRefGoogle Scholar
  16. 16.
    Kalam, M.A., Ahamed, J.U., Masjuki, H.H.: Land Availability of Jatropha Production in Malaysia. Renewable and Sustainable Energy Reviews 16, 3999–4007 (2012)CrossRefGoogle Scholar
  17. 17.
    Mofijur, M., Masjuki, H.H., Kalam, M.A., Hazrat, M.A., Liaquat, A.M., Shahabuddin, M., Varman, M.: Prospects of Biodiesel from Jatropha in Malaysia. Renewable and Sustainable Energy Reviews 16, 5007–5020 (2012)CrossRefGoogle Scholar
  18. 18.
    Silip, J.J., Tambunan, A.H., Hambali, H., Sutrisno, S.M.: Lifecycle Duration and Maturity Heterogeneity of Jatropha Curcas Linn. Journal of Sustainable Development 3(2), 291–295 (2010)CrossRefGoogle Scholar
  19. 19.
    Bionas Jatropha Biodiesel Project, http://www.bionas.com.my
  20. 20.
    MPOB, APOC: Palm Oil Development and Performance in Malaysia. Presentation to USITC Washington DC (2010)Google Scholar
  21. 21.
    Kim, J., Realff, M.J., Lee, J.H.: Optimal Design and Global Sensitivity Analysis of Biomass Supply Chain Networks for Biofuels under Uncertainty. Computers and Chemical Engineering 35, 1738–1751 (2011)CrossRefGoogle Scholar
  22. 22.
  23. 23.
    Lopez, G.P., Laan, T.: Biofuels-at What Cost? Government Support for Biodiesel in Malaysia. One of a series of reports addressing subsidies for biofuels in selected developing countries (2008)Google Scholar
  24. 24.
  25. 25.
    Malaysia Energy Information Hub, http://www.meih.st.gov.my

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Maryam Valizadeh
    • 1
  • S. Syafiie
    • 1
  • I. S. Ahamad
    • 1
  1. 1.Department of Chemical and Environmental EngineeringUniversity Putra MalaysiaSerdangMalaysia

Personalised recommendations