ANFIS Based Model for Bispectral Index Prediction

  • Jing Jing Chang
  • S. Syafiie
  • Raja Kamil Raja Ahmad
  • Thiam Aun Lim
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 287)


Prediction of depth of hypnosis is important in administering optimal anaesthesia during surgical procedure. However, the effect of anaesthetic drugs on human body is a nonlinear time variant system with large inter-patient variability. Such behaviours often caused limitation to the performance of conventional model. This paper explores the possibility of using the Adaptive Neuro-Fuzzy Inference System (ANFIS) to create a model for predicting Bispectral Index (BIS). BIS is a well-studied indicator of hypnotic level. Propofol infusion rate and past values of BIS were used as the input variables for modelling. Result shows that the ANFIS model is capable of predicting BIS very well.


anesthesia modeling PKPD neuro-fuzzy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shafer, S., Stanski, D.: Defining depth of anesthesia. In: Schttler, J., Schwilden, H. (eds.) Modern Anesthetics, Handbook of Experimental Pharmacology, vol. 182, pp. 409–423. Springer, Heidelberg (2008)Google Scholar
  2. 2.
    Musizza, B., Ribaric, S.: Monitoring the depth of anaesthesia. Sensors 10(12), 10,896–10,935 (2010)Google Scholar
  3. 3.
    Fahlenkamp, A.V., Peters, D., Biener, I.A., et al.: Evaluation of bispectral index and auditory evoked potentials for hypnotic depth monitoring during balanced xenon anaesthesia compared with sevoflurane. Br. J. Anaesth. 105(3), 334–341 (2010)CrossRefGoogle Scholar
  4. 4.
    Rampil, I.J.: A primer for EEG signal processing in anesthesia. Anesthesiology 89(4), 980–1002 (1998)CrossRefGoogle Scholar
  5. 5.
    Hahn, J.O., Dumont, G., Ansermino, J.: A direct dynamic dose-response model of propofol for individualized anesthesia care. IEEE Trans. Biomed. 59(2), 571–578 (2012)CrossRefGoogle Scholar
  6. 6.
    Rocha, C., Mendona, T., Silva, M.: Individualizing propofol dosage: a multivariate linear model approach. J. Clin. Monitor. Comp., 1–12 (2013)Google Scholar
  7. 7.
    Sartori, V., Schumacher, P.M., Bouillon, T., Luginbuehl, M., Morari, M.: Online estimation of propofol pharmacodynamic parameters. In: 27th Annual International Conference of the Engineering in Medicine and Biology Society, IEEE-EMBS 2005, Shanghai, China, pp. 74–77 (2005)Google Scholar
  8. 8.
    Sawaguchi, Y., Furutani, E., Shirakami, G., Araki, M., Fukuda, K.: A model-predictive hypnosis control system under total intravenous anesthesia. IEEE Trans. Biomed. 55(3), 874–887 (2008)CrossRefGoogle Scholar
  9. 9.
    Jang, J.S.: Anfis: adaptive-network-based fuzzy inference system. IEEE Trans. Syst., Man, Cybern., Syst. 23(3), 665–685 (1993)CrossRefGoogle Scholar
  10. 10.
    Jang, J.S.: Input selection for anfis learning. In: Proceedings of the Fifth IEEE International Conference on Fuzzy Systems, vol. 2, pp. 1493–1499 (1996)Google Scholar
  11. 11.
    Esmaeili, V., Assareh, A., Shamsollahi, M.B., Moradi, M., Arefian, N.M.: Designing a fuzzy rule based system to estimate depth of anesthesia. In: IEEE Symposium on Computational Intelligence and Data Mining, CIDM 2007, Honolulu, pp. 681–687 (2007)Google Scholar
  12. 12.
    Robert, C., Karasinski, P., Arreto, C., Gaudy, J.: Monitoring anesthesia using neural networks: A survey. J. Clin. Monitor. Comp. 17(3-4), 259–267 (2002)CrossRefGoogle Scholar
  13. 13.
    Zhang, X.S., Roy, R.J.: Derived fuzzy knowledge model for estimating the depth of anesthesia. IEEE Trans. Biomed. 48(3), 312–323 (2001)CrossRefGoogle Scholar
  14. 14.
    Brás, S., Gouveia, S., Ribeiro, L., Ferreira, D., Antunes, L., Nunes, C.: Fuzzy logic model to describe anesthetic effect and muscular influence on EEG cerebral state index. Res. Vet. Sci. 94(3), 735–742 (2013)CrossRefGoogle Scholar
  15. 15.
    Jensen, E., Nebot, A.: Comparison of fir and anfis methodologies for prediction of mean blood pressure and auditory evoked potentials index during anaesthesia. In: Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Hong Kong, vol. 3, pp. 1385–1388 (1998)Google Scholar
  16. 16.
    Baig, M.M., Gholam-Hosseini, H., Lee, S.W., Harrison, M.: Detection and classication of hypovolaemia during anaesthesia. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, pp. 357–360 (2011)Google Scholar
  17. 17.
    Nunes, C., Amorim, P.: A neuro-fuzzy approach for predicting hemodynamic responses during anesthesia. In: 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2008, pp. 5814–5817 (2008)Google Scholar
  18. 18.
    Zhou, Y., Wu, Y.: Analyses on influence of training data set to neural network supervised learning performance. In: Jin, D., Lin, S. (eds.) CSISE 2011. AISC, vol. 106, pp. 19–25. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Jing Jing Chang
    • 1
  • S. Syafiie
    • 1
  • Raja Kamil Raja Ahmad
    • 2
  • Thiam Aun Lim
    • 3
  1. 1.Department of Chemical and Environmental EngineeringUniversiti Putra MalaysiaSerdangMalaysia
  2. 2.Department of Electrical and Electronic EngineeringUniversiti Putra MalaysiaSerdangMalaysia
  3. 3.Anaesthesiology Unit, Department of SurgeryUniversiti Putra MalaysiaSerdangMalaysia

Personalised recommendations