Skip to main content

Speciation of Actinides After Plant Uptake

  • Chapter
  • First Online:
Radionuclide Contamination and Remediation Through Plants

Abstract

Actinides have high hazardous potential. They are non-essential elements. Besides the natural occurring elements such as uranium, thorium and their decay products, the transuranium elements neptunium, plutonium, americium and curium are important actinide elements to be considered in nuclear waste management and nuclear accidents. It is known that the toxicity of an element depends strongly on its speciation and therefore also on its bioavailability. As an example, the toxicity of uranium decreases in the series uranyl phosphates > uranyl citrates > uranyl carbonates. This underlies the importance of knowledge about the element speciation of actinides. Plants are an important part within the food chain. Therefore, knowledge about the speciation of actinides in these organisms may evince hazards after consumption and ways to protect living beings. Nevertheless, the knowledge about actinide speciation in organisms including plants is very rare. Most of publications up to now deal with transfer factors. A few publications point out that actinides exist often in a phosphate form. Nevertheless, during uptake, other binding forms may play important intermediates. Also, information about binding forms of actinides in storage compartments inside plant cells helps to estimate the hazardous potential. Uranium, americium and curium show luminescence properties, which can be used for the determination of the binding of these elements. Therefore, it can be expected that the knowledge increases in the next decade.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Auer J (1993) Verhalten radioaktiver nuklide im system pflanze – Boden, In: ZALF Berichte 33–45

    Google Scholar 

  • Baker AJM (1981) Accumulators and excluders—strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654

    Article  CAS  Google Scholar 

  • Blake RC, Pavlov AR, Khosraviani M, Ensley HE, Kiefer GE, YU H, Li X, Blake DA (2004) Novel monoclonal antibodies with specificity for chelated uranium(VI): isolation and binding properties. Bioconjugate Chem 15:1125–1136

    Article  CAS  Google Scholar 

  • Bunzl K, Kracke W (1987) Soil to plant transfer of Pu-239 + Pu-240, Pu-238, Am-241, Cs-137 and Sr-90 from global fallout in flour and bran from wheat, rye, barley and oats, as obtained by field-measurements. Sci Total Environ 63:111–124

    Article  CAS  PubMed  Google Scholar 

  • Bunzl K, Kracke W (1990) Simultaneous determination of Pu-238, Pu-239+240, Pu-241, Am-241, Cm-242, Cm-244, Sr-89, and Sr-90 in vegetation samples, and application to Chernobyl-fallout contaminated grass. J Radioanal Nucl Chem 138:83–91

    Article  CAS  Google Scholar 

  • Caldwell EF, Duff MC, Ferguson CE, Coughlin DP, Hicks RA, Dixon E (2012) Bio-monitoring for uranium using stream-side terrestrial plants and macrophytes. J Environ Monit 14:968–976

    Article  CAS  PubMed  Google Scholar 

  • Cataldo DA, McFadden KM, Garland TR, Wildung RE (1988) Organic constituents and complexation of nickel(II), iron(III), cadmium(II) and plutonium(IV) in soybean xylem excudates. Plant Physiol 86:734–739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Choppin GR (2007) Actinide speciation in the environment. J Radioanal Nucl Chem 273:695–703

    Article  CAS  Google Scholar 

  • Coughtrey PJ, Jackson D, Thorne MC (1984) Radionuclide distribution and transport in terrestrical and aquatic ecosystems—a critical review of data. Balkema, Rotterdam and Boston

    Google Scholar 

  • Cvetkovic A, Menon AL, Thorgersen MP, Scott JW, Poole FL, Jenney FE Jr, Lancaster WA, Praissman JL, Shanmukh S, Vaccaro BJ, Trauger SA, Kalisiak E, Apon JV, Siuzdak G, Yannone SM, Tainer JA, Adams MW (2010) Microbial metalloproteomes are largely uncharacterized. Nature 466:779–782

    Article  CAS  PubMed  Google Scholar 

  • Dean KM, Qin Y, Palmer AE (2012) Visualizing metal ions in cells: an overview of analytical techniques, approaches, and probes. Biochim Biophys Acta Mol Cell Res 1823:1406–1415

    Article  CAS  Google Scholar 

  • Donner E, Punshon T, Guerinot ML, Lombi E (2012) Functional characterization of metal(loid) processes in plant through the integration of synchrotron techniques and plant molecular biology. Anal Bioanal Chem 402:3287–3298

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ebbs SD, Brady DJ, Kochian LV (1998) Role of uranium speciation in the uptake and translocation of uranium by plants. J Exp Bot 49:1183–1190

    Article  CAS  Google Scholar 

  • Fortin C, Dutel L, Garnier-Laplace J (2004) Uranium complexation and uptake by a green algae in relation to chemical speciation: the importance of the free uranyl ion. Env Technol Chem 23:974–981

    CAS  Google Scholar 

  • Francis AJ, Dodge CJ, Gillow JB (1992) Biodegradation of metal citrate complexes and implications for toxic-metal mobility. Nature 356:140–142

    Article  CAS  Google Scholar 

  • Frost L, Geipel G, Viehweger K, Bernhard G (2011) Interaction of uranium(VI) towards glutathione—an example to study different functional groups in one molecule. Pro Radiochem Supp Radiochima Acta 1:357–362

    Google Scholar 

  • Garden CT, Tucker CS, Scott TG (1986) Plant uptake of Neptunium-237 and Technetium-99 under field conditions. J Environ Radioact 4:91–99

    Article  Google Scholar 

  • Garland TR, Cataldo DA, Wildung RE (1981) Absorption, transport and chemical fate of plutonium in soybean plants. J Agric Food Chem 29:915–920

    Article  CAS  PubMed  Google Scholar 

  • Geipel G, Bernhard G, Brendler V, Reich T (2000) Complex formation between uranium(VI) and adenosine triphosphate. NRC5, 5th international conference on nuclear and radiochemistry, Extended abstracts, Pontresina, Switzerland

    Google Scholar 

  • Germain P, Pinte G (1990) Neptunium-237 in the marine environment determination in animal and plant species in the English Channel: biological indicators and trophic relationships. J Radioanal Nucl Chem 138:49–61

    Article  Google Scholar 

  • Greger M (2004) Uptake of nuclides by plants. SKB technical report TR-04-14, Stockholm

    Google Scholar 

  • Guenther A, Bernhard G, Geipel G, Reich T, Rossberg A, Nitsche H (2003) Uranium speciation in plants. Radiochim Acta 91:319–328

    Article  CAS  Google Scholar 

  • Guenther A, Geipel G, Bernhard G (2006) Complex formation of U(VI) with the amino acid L-threonine and the corresponding phosphate ester O-phospho-L-threonine. Radiochim Acta 94:845–851

    CAS  Google Scholar 

  • Haas JR, Bailay EH, Purvis OW (1998) Bioaccumulation of metals b lichens: uptake of aqueous uranium by Peltigera membranacea as a function of time and pH. Am Mineral 83:1494–1502

    CAS  Google Scholar 

  • Haunold E, Horak O, Gerzabek M (1987) Environmental-radioactivity and its impact on agriculture 1. The behavior of radionuclides in soils and plants. Bodenkultur 38:95–118

    CAS  Google Scholar 

  • Heller A, Barkleit A, Bernhard G (2011) Chemical speciation of trivalent actinides and lanthanides in biological fluids: the dominant in vitro binding form of curium(III) and europium(III) in human urine. Chem Res Toxicol 24:193–203

    Article  CAS  PubMed  Google Scholar 

  • Heller A, Barkleit A, Foerstendorf H, Tsushima S, Heim K, Bernhard G (2012) Curium(III) citrate speciation in biological systems: a europium(III) assisted spectroscopic and quantum chemical study. Dalton Trans 41:13969–13983

    Article  CAS  PubMed  Google Scholar 

  • Huang JWW, Blaylock MJ, Kapulnik Y, Ensley BD (1998) Phytoremediation of uranium contaminated soils: role of organic acids in triggering uranium hyperaccumulation in plants. Env Sci Technol 32:2004–2008

    Article  CAS  Google Scholar 

  • Ibrahim SA, Whicker FW (1992) Comparative plant uptake and environmental behavior of U-series radionuclides at a uranium mine-mill. J Radioanal Nucl Chem 156:253–267

    Article  CAS  Google Scholar 

  • Jeanson A, Berthon C, Coantic S, Den Auwer C, Floquet N, Funke H, Guillaneux D, Hennig C, Martinez J, Moisy P, Petit S, Proux O, Quémeneur E, Solarig PL, Subrac G (2009) The role of aspartyl-rich pentapeptides in comparative complexation of actinide(IV) and iron(III). New J Chem 33:976–985

    Article  CAS  Google Scholar 

  • Joshi-Tope G, Francis AJ (1995) Mechanisms of biodegradation of metal-citrate complexes by Pseudomonas-fluorescens. J Bacteriol 177:1989–1993

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kobayashi T, Nishizawa NK (2012) Iron uptake, translocation, and regulation in higher plants. Ann Rev Plant Biol 63:131–152

    Article  CAS  Google Scholar 

  • Kramer U, Talke IN, Hanikenne M (2007) Transition metal transport. FEBS Lett 581:2263–2272

    Article  PubMed  Google Scholar 

  • Larsson C, Sommarin M, Widell S (1994) Isolation of highly purified plant plasma-membranes and separation of inside-out and right-side-out vesicles. Aqueo Two-Phase Sys 228:451–469

    Article  CAS  Google Scholar 

  • Laurette J, Larue C, Mariet C, Brisset F, Khodja H, Bourguignon J, Carriere M (2012) Influence of uranium speciation on its accumulation and translocation in three plant species: oilseed rape, sunflower and wheat. Environ Exp Bot 77:96–107

    Article  CAS  Google Scholar 

  • Lee JH, Hossner LR, Attrep M, Kung KS (2002a) Uptake and translocation of plutonium in two plant species using hydroponics. Env Pollut 117:61–68

    Article  CAS  Google Scholar 

  • Lee JH, Hossner LR, Attrep M, Kung KS (2002b) Comparative uptake of plutonium from soils by Brassica juncea and Helianthos annuus. Env Pollut 117:173–182

    Article  Google Scholar 

  • Maret W (2010) Metalloproteomics, metalloproteomes, and the annotation of metalloproteins. Metallomics 2:117–125

    Article  CAS  PubMed  Google Scholar 

  • Markich SJ (2002) Uranium speciation and bioavailability in aquatic systems: an overview. Sci World J 2:707–729

    Article  CAS  Google Scholar 

  • Marquardt CM, Panak PJ, Apostolidis C, Morgenstern A, Walther C, Klenze R, Fanghanel T (2004) Fluorescence spectroscopy on protactinium(IV) in aqueous solution. Radiochem Acta 92:445–447

    Article  CAS  Google Scholar 

  • Menetrier F, Taylor DM, Comte A (2008) The biokinetics and radiotoxicology of curium: a comparison with americium. Appl Radiation Isotopes 66:632–647

    Article  CAS  Google Scholar 

  • Mitchell N, Perez-Sanchez D, Thorne MC (2013) A review of the behaviour of U-238 series radionuclides in soils and plants. J Radiol Prot 33:R17–R48

    Article  CAS  PubMed  Google Scholar 

  • Moll H, Geipel G, Bernhard G (2005) Complexation of curium(III) by adenosine 5′-triphosphate (ATP): a time-resolved laser-induced fluorescence spectroscopy (TRLFS) study. Inorg Chim Acta 358:2275–2282

    Article  CAS  Google Scholar 

  • Mortvedt JJ (1994) Plant and soil relationships of uranium and thorium decay series Radionuclides—a review. J Environ Qual 23:643–648

    Article  CAS  Google Scholar 

  • Nazir M, Naqvi II (2010) Synthesis and characterization of uranium(IV) complexes with various amino acids. J Saudi Chem Soc 14:101–104

    Article  CAS  Google Scholar 

  • Pimpl M (1998) Untersuchungen zum Boden/Pflanzen Transfer von Np-237, Pu-238, Am-241 und Cm-244; KfK-4452, Kernforschungszentrum Karlsruhe

    Google Scholar 

  • Ribera D, Labrot F, Tisnerat G, Narbonne JF (1996) Uranium in the environment: occurrence, transfer, and biological effects. Rev Environ Contam Toxicol 146:53–89

    CAS  PubMed  Google Scholar 

  • Rizkalla EN, Netoux F, Dabos-Seignon S, Pages M (1993) Complexation of neptunium(V) by adenosine phosphates. J Inorg Biochem 51:701–703

    Article  CAS  Google Scholar 

  • Robertson DE, Cataldo DA, Napier BA (2003) Literature review and assessment of plant and animal transfer factors used in performance assessment modeling NUREG/CR-6825 PNNL-14321

    Google Scholar 

  • Runde W (2000) The chemical interactions of actinides in the environment. Los Alamos Sci 26

    Google Scholar 

  • Ryan PR, Delhaize E, Jones DL (2001) Function and mechanism of organic exudation from plant roots. Annu Rev Plant Physiol Plant Mol Biol 55:527–560

    Article  Google Scholar 

  • Schreckhise RG, Cline JF (1980) Comparative uptake and distribution of plutonium, americium, curium and neptunium in four plant species. Health Phys 38:814–817

    Google Scholar 

  • Sheppard SC, Evenden WG (1988) Critical compilation and review of plant/soil concentration ratios for uranium, thorium and lead. J Environ Radioact 8:255–285

    Article  CAS  Google Scholar 

  • Shtangeeva I (2010) Uprtake of uranium and thorium by native and cultivated plants. J Env Radioact 101:458–463

    Article  CAS  Google Scholar 

  • Shtangeeva I, Ayrault S, Jani J (2005) Thorium uptake by wheat at different stages of plant growth. J Env Radioact 81:283–293

    Article  CAS  Google Scholar 

  • Simon LS, Ibrahim SA (1990) Biological uptake of Radium by terrestrial plants. In: The environmental behavior of radium. Technical reports series 310, International Atomic Energy Agency, Vienna, Austria

    Google Scholar 

  • Soudek P, Kufner D, Petrova S, Mihaljevic M, Vanek T (2013) Composition of hydroponic medium affects thorium uptake by tobacco plants. Chemosphere 92:1090–1098

    Article  CAS  PubMed  Google Scholar 

  • Taylor DM (1998) The bioinorganic chemistry of actinides in blood. J Alloys Comp 271–273:6–10

    Article  Google Scholar 

  • Viehweger K, Geipel G (2010) Uranium accumulation and tolerance in Arabidopsis halleri under native versus hydroponic conditions. Env Exp Bot 69:39–46

    Article  CAS  Google Scholar 

  • Viehweger K, Geipel G, Bernhard G (2011) Impact of uranium (U) on the cellular glutathione pool and resultant consequences for the redox status of U. Biometals 24:1197–1204

    Article  CAS  PubMed  Google Scholar 

  • Vogel M, Guenther A, Rossberg A, Li B, Bernhard G, Raff J (2010) Biosorption of U(VI) by the green algae Chlorella vulgaris in dependence of pH value and cell activity. Sci Total Env 409:384–395

    Article  CAS  Google Scholar 

  • Yannone SM, Hartung S, Menon AL, Adams MW, Tainer JA (2012) Metals in biology: defining metalloproteomes. Curr Opin Biotechnol 23:89–95

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zotina TA, Kalachova GS, A. Bolsunovsky AYa (2008) 241Am distribution in the biomass of freshwater macrophytes. Dokl Biol Sci 421:254–256

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Geipel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Geipel, G., Viehweger, K. (2014). Speciation of Actinides After Plant Uptake. In: Gupta, D., Walther, C. (eds) Radionuclide Contamination and Remediation Through Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-07665-2_10

Download citation

Publish with us

Policies and ethics