Advertisement

An Agent Cognitive Model for Visual Attention and Response to Novelty

  • Cynthia Ávila-Contreras
  • Ory Medina
  • Karina Jaime
  • Félix Ramos
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 296)

Abstract

Cognitive virtual agents are useful in human behavior simulation. We present a biologically inspired cognitive model for visual attention that takes into account the occurrence of novel stimulus, and it deals with the habituation to novelty. Our approach relies on the identification of cerebral areas involved in attention, semantic memory and non-associative learning; the processes related to each of them and the hypothetical information generated in each step. The model described in this paper is capable to be integrated in a cognitive architecture to interact with other cognitive functions.

Keywords

Cognitive Agent Models Perception Visual Attention Novelty Handling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kandel, E.R., Schwartz, J.H., Jessell, T.M., Siegelbaum, S.A., Hudspeth, A. (eds.): Principles of neural science, vol. 4. McGraw-Hill, New York (2013)Google Scholar
  2. 2.
    Frintrop, S., Rome, E., Christensen, H.I.: Computational visual attention systems and their cognitive foundations: A survey. ACM Transactions on Applied Perception (TAP) 7(1), 6 (2010)Google Scholar
  3. 3.
    Diaz-Barriga, S., Torres, G., Ramos, F.: Feature-based saliency for a model of bottom-up visual attention. In: 11th IEEE International Conference on Cognitive Informatics and Cognitive Computing, pp. 399–406 (2012)Google Scholar
  4. 4.
    Sokolov, E., Vinogradova, O.: Neuronal mechanisms of the orienting reflex. L. Erlbaum Associates (1975)Google Scholar
  5. 5.
    Rankin, C.H., Abrahams, T., Barry, R.J., Bhatangar, S., Clayton, D.F., Colombo, J., Coppola, G., Geyer, M.A., Glanzman, D.L., Marsland, S., McSweeney, F.K., Wilson, D.A., Wu, C.F., Thompson, R.F.: Habituation revisited: An updated and revised description of the behavioral characteristics of habituation. Neurobiology of Learning and Memory 92, 135–138 (2009)CrossRefGoogle Scholar
  6. 6.
    Yamaguchi, S., Hale, L.A., D’Esposito, M., Knight, R.T.: Rapid prefrontal-hippocampal habituation to novel events. The Journal of Neuroscience 24, 5356–5363 (2004)CrossRefGoogle Scholar
  7. 7.
    Ranganath, C., Rainer, G., et al.: Neural mechanisms for detecting and remembering novel events. Nature Reviews Neuroscience 4(3), 193–202 (2003)CrossRefGoogle Scholar
  8. 8.
    Borisyuk, R.M., Kazanovich, Y.B.: Oscillatory model of attetion-guided object selection and novelty detection. Neural Networks 17, 899–915 (2004)CrossRefMATHGoogle Scholar
  9. 9.
    Vikram, T., Tscherepanow, M., Wrede, B.: Integrating habituation into saliency maps. In: 2012 IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL), pp. 1–2 (2012)Google Scholar
  10. 10.
    Itti, L., Rees, G., Tsotsos, J.K.: Neurobiology of attention. Access Online via Elsevier (2005)Google Scholar
  11. 11.
    Marsland, S.: Using habituation in machine learning. Neurobiology of Learning and Memory 92, 260–266 (2009), Special Issue: Neurobiology of HabituationGoogle Scholar
  12. 12.
    Banich, M.T., Milham, M.P., Atchley, R.A., Cohen, N.J., Webb, A., Wszalek, T., Kramer, A.F., Liang, Z.P., Barad, V., Gullett, D., Shah, C., Brown, C.: Prefrontal regions play a predominant role in imposing an attentional ’set’: evidence from fmri. Cognitive Brain Research 10(1-2), 1–9 (2000)CrossRefGoogle Scholar
  13. 13.
    Shipp, S.: The brain circuitry of attention. Trends in Cognitive Sciences 8(5), 223–230 (2004)CrossRefGoogle Scholar
  14. 14.
    Saalmann, Y.B., Kastner, S.: Gain control in the visual thalamus during perception and cognition. Current Opinion in Neurobiology 19(4), 408–414 (2009)CrossRefGoogle Scholar
  15. 15.
    Mayo, J.P.: Intrathalamic mechanisms of visual attention. Journal of Neurophysiology 101(3), 1123–1125 (2009)CrossRefMathSciNetGoogle Scholar
  16. 16.
    VanRullen, R.: Visual saliency and spike timing in the ventral visual pathway. Journal of Physiology-Paris 97(2-3), 365–377 (2003), Neurogeometry and visual perceptionGoogle Scholar
  17. 17.
    Miyashita, Y.: Inferior temporal cortex: where visual perception meets memory. Annual Review of Neuroscience 16(1), 245–263 (1993)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Sigala, N., Logothetis, N.K.: Visual categorization shapes feature selectivity in the primate temporal cortex. Nature 415(6869), 318–320 (2002)CrossRefGoogle Scholar
  19. 19.
    Corbetta, M., Shulman, G.L.: Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews. Neuroscience 3(3), 201–215 (2002)CrossRefGoogle Scholar
  20. 20.
    Geng, J.J., Mangun, G.R.: Anterior intraparietal sulcus is sensitive to bottom–up attention driven by stimulus salience. Journal of Cognitive Neuroscience 21(8), 1584–1601 (2009)CrossRefGoogle Scholar
  21. 21.
    Molenberghs, P., Mesulam, M.M., Peeters, R., Vandenberghe, R.R.: Remapping attentional priorities: differential contribution of superior parietal lobule and intraparietal sulcus. Cerebral Cortex 17(11), 2703–2712 (2007)CrossRefGoogle Scholar
  22. 22.
    Wardak, C., Ibos, G., Duhamel, J.R., Olivier, E.: Contribution of the monkey frontal eye field to covert visual attention. The Journal of Neuroscience 26(16), 4228–4235 (2006)CrossRefGoogle Scholar
  23. 23.
    Yantis, S., Schwarzbach, J., Serences, J.T., Carlson, R.L., Steinmetz, M.A., Pekar, J.J., Courtney, S.M.: Transient neural activity in human parietal cortex during spatial attention shifts. Nature Neuroscience 5(10), 995–1002 (2002)CrossRefGoogle Scholar
  24. 24.
    Aggleton, J.P., Brown, M.W.: Contrasting hippocampal and perirhinal cortex function using immediate early gene imaging. The Quarterly Journal of Experimental Psychology 58(3-4), 218–233 (2005)CrossRefGoogle Scholar
  25. 25.
    Lee, I., Hunsaker, M.R., Kesner, R.P.: The role of hippocampal subregions in detecting spatial novelty. Behavioral Neuroscience 119, 145–153 (2005)CrossRefGoogle Scholar
  26. 26.
    Daselaar, S.M., Fleck, M.S., Cabeza, R.: Triple dissociation in the medial temporal lobes: Recollection, familiarity, and novelty. Journal of Neurophysiology 96(4), 1902–1911 (2006)CrossRefGoogle Scholar
  27. 27.
    Afifi, A.K., Bergman, R.A.: Functional Neuroanatomy. McGraw-Hill New York (1998)Google Scholar
  28. 28.
    Mesulam, M.M., Mufson, E.: Neural inputs into the nucleus basalis of the substantia innominata (ch4) in the rhesus monkey. Brain 107(1), 253–274 (1984)CrossRefGoogle Scholar
  29. 29.
    Cavada, C., Compañy, T., Tejedor, J., Cruz-Rizzolo, R.J., Reinoso-Suarez, F.: The anatomical connections of the macaque monkey orbitofrontal cortex. a review. Cerebral Cortex 10(3), 220–242 (2000)CrossRefGoogle Scholar
  30. 30.
    Martin, A.: Semantic memory. In: Squire, L.R. (ed.) Encyclopedia of Neuroscience. Academic Press (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Cynthia Ávila-Contreras
    • 1
  • Ory Medina
    • 1
  • Karina Jaime
    • 1
  • Félix Ramos
    • 1
  1. 1.Department of Computer ScienceCinvestav Unidad GuadalajaraZapopanMexico

Personalised recommendations