Advertisement

Microeconomic Demand Functions Implementation in Java Experiments

  • Roman Šperka
  • Marek Spišák
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 296)

Abstract

The aim of this paper is to introduce microeconomic demand functions (Marshallian demand function and Cobb-Douglas utility function) in Java simulation experiments. The motivation is to use these function as a core element in a seller-to-customer price negotiation in an agent-based simulations. Furthermore, multi-agent model is proposed and implemented in Java to serve as a simulation framework to support the virtual company trading processes. The main background of this framework is to be integrated in management information systems as a decision support module. The paper firstly presents some of the existing principles about consumer behavior, agent-based modeling and simulation in the same area and demand function theory. Secondly, presents multi-agent model and demand functions negotiations. Lastly, depicts some of the simulation results in a trading processes throughout one year of selling commodities to consumers. The results obtained show that in some metrics the demand functions could be used to predict the trading results of a company.

Keywords

seller-to-customer negotiation Marshallian demand function virtual company simulation agent-based 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chramcov, B., Bucki, R., Suchánek, P.: Logistic Optimization of the Complex Manufacturing System with Parallel Production Lines. Journal of Applied Economic Sciences VIII(3(25), 17–23 (2013) ISSN: 1843-6110Google Scholar
  2. 2.
    Šperka, R.: Application of a Simulation Framework for Decision Support Sys-tems. MITTEILUNGEN KLOSTERNEUBURG, Hoehere Bundeslehranstalt und Bundesamt fuer Wein- und Obstbau, Klosterneuburg, Austria 64(1) (2014) ISSN 0007-5922Google Scholar
  3. 3.
    Šperka, R., Vymětal, D., Spišák, M.: Towards the Validation of Agent-based BPM Simulation. In: Proc. Frontiers in Artificial Intelligence and Applications, 7th International Conference KES-AMSTA 2013, Hue city, Vietnam, vol. 252, pp. 276–283. IOS Press BV, Amsterdam (2013) ISBN 978-1-61499-253-0 (print)Google Scholar
  4. 4.
    Šperka, R., Spišák, M., Slaninová, K., Martinovič, J., Dráždilová, P.: Control Loop Model of Virtual Company in BPM Simulation. In: Snasel, V., Abraham, A., Corchado, E.S. (eds.) SOCO Models in Industrial & Environmental Appl. AISC, vol. 188, pp. 515–524. Springer, Heidelberg (2013)Google Scholar
  5. 5.
    Šperka, R., Spišák, M.: Transaction Costs Influence on the Stability of Financial Market: Agent-based Simulation. Journal of Business Economics and Management 14(suppl. 1), S1–S12 (2013), doi:10.3846/16111699.2012.701227 ISSN 1611-1699Google Scholar
  6. 6.
    Šperka, R., Vymětal, D.: MAREA - an Education Application for Trading Company Simulation based on REA Principles. In: Proc. Advances in Education Research, USA. Information, Communication and Education Application, vol. 30, pp. 140–147 (2013) ISBN 978-1-61275-056-9Google Scholar
  7. 7.
    Barnett, M.: Modeling & Simulation in Business Process Management’, Gensym Corporation, pp. 6–7 (2003), http://news.bptrends.com/publicationfiles/1103%20WP%20Mod%20Simulation%20of%20BPM%20-%20Barnett-1.pdf (accessed January 16, 2012)
  8. 8.
    Enis, B.M.: Marketing principles: the management process. Goodyear Pub. Co. (Pacific Palisades, California), 608 p. (1974) ISBN 0876205503Google Scholar
  9. 9.
    McCarthy, E.J., Perreault, W.D.: Basic marketing: a global-managerial approach. Irwin, 792 p. (1993) ISBN 025610509XGoogle Scholar
  10. 10.
    Keegan, W., Moriarty, S., Duncan, T.: Marketing, 193 p. Prentice-Hall, Englewood Cliffs (1992)Google Scholar
  11. 11.
    Schiffman, L.G., Kanuk, L.L.: Purchasing Behavior, 9th edn. Pearson Prentice Hall, Upper Saddle River (2007)Google Scholar
  12. 12.
    Gregson, N., Crewe, L., Brooks, K.: Shopping, space, and practice. Environment and Planning D 20(5), 597–617 (2002), doi:10.1068/d270tCrossRefGoogle Scholar
  13. 13.
    Challet, D., Krause, A.: What questions to ask in order to validate an agent-based model. In: Report of the 56th European Study Group with Industry, pp. J1–J9 (2006)Google Scholar
  14. 14.
    Tay, N., Lusch, R.: Agent-Based Modeling of Ambidextrous Organizations: Virtualizing Competitive Strategy. IEEE Transactions on Intelligent Systems 22(5), 50–57 (2002)CrossRefGoogle Scholar
  15. 15.
    Wilkinson, I., Young, L.: On cooperating: Firms. Relations. Networks. Journal of Business Research (55), 123–132 (2002)Google Scholar
  16. 16.
    Casti, J.: Would-be Worlds. How Simulation is Changing the World of Science. Wiley (1997)Google Scholar
  17. 17.
    Goldenberg, J., Libai, B., Muller, E.: The Chilling effect of network external-ities. International Journal of Research in Marketing 27(1), 4–15 (2010)CrossRefGoogle Scholar
  18. 18.
    Heath, B., Hill, R., Ciarallo, F.: A survey of agent-based modeling practices (January 1998 to July 2008). Journal of Artificial Societies and Social Simulation 12(4), 5–32 (2009)Google Scholar
  19. 19.
    Rahmandad, H., Sterman, J.: Heterogeneity and network structure in the dynamics of diffusion: Comparing agent-based and differential equation models. Management Science 54(5), 998–1014 (2008)CrossRefGoogle Scholar
  20. 20.
    Shaikh, N., Ragaswamy, A., Balakrishnan, A.: Modelling the Diffusion of In-novations Using Small World Networks. Working Paper. Penn State University. Philadelphia (2005)Google Scholar
  21. 21.
    Toubia, O., Goldenberg, J., Garcia, R.: A New approach to modeling the adoption of new products: Aggregated Diffusion Models. MSI Reports: Working Papers Series 8(1), 65–76 (2008)Google Scholar
  22. 22.
    Adjali, I., Dias, B., Hurling, R.: Agent based modeling of consumer behavior. In: Proceedings of the North American Association for Computational Social and Organizational Science Annual Conference. University of Notre Dame, Notre Dame (2005)Google Scholar
  23. 23.
    Ben, L., Bouron, T., Drogoul, A.: Agent-based interaction analysis of con-sumer behavior. In: Proceedings of the First International Joint Conference on Autonomous Agents and Multiagent Systems: Part 1, pp. 184–190. ACM, New York (2002)Google Scholar
  24. 24.
    Marshall, A.: Principle of Economics, 8th edn. MacMillan, London (1920)Google Scholar
  25. 25.
    Mas-Colell, A., Whinston, M., Green, J.: Microeconomic Theory. Oxford University Press, Oxford (1995) ISBN 0-19-507340-1Google Scholar
  26. 26.
    Pollak, R.: Conditional Demand Functions and Consumption Theory. Quarterly Journal of Economics 83, 60–78 (1969)CrossRefMATHGoogle Scholar
  27. 27.
    Varian, H.R.: Microeconomic Analysis, 3rd edn., ch. 7, 8 and 9. W.W. Norton & Company, New York (1992)Google Scholar
  28. 28.
    Foundation for Intelligent Physical Agents (FIPA): FIPA Contract Net Interaction Protocol. In: Specification [online]. FIPA (2002), http://www.fipa.org/specs/fipa00029/SC00029H.pdf (cit. June 13, 2011)
  29. 29.
    Vymětal, D., Spišák, M., Šperka, R.: An Influence of Random Number Generation Function to Multiagent Systems. In: Jezic, G., Kusek, M., Nguyen, N.-T., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2012. LNCS, vol. 7327, pp. 340–349. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.School of Business Administration in Karviná, Department of InformaticsSilesian University in OpavaKarvináCzech Republic

Personalised recommendations