Multi-agent Non-linear Temporal Logic with Embodied Agent Describing Uncertainty

Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 296)


We study multi-agent non-linear temporal Logic \({\bf T^{Em,Int}_{Kn} }\) with embodied agent. Our approach models interaction of the agents and various aspects for computation of uncertainty in multi-agent environment. We construct algorithms for verification satisfiability and truth statements in the logic \({\bf T^{Em,Int}_{Kn} }\). Found computational algorithms are based at refutability of rules in reduced form at special finite frames of effectively bounded size. We show that our chosen framework is rather flexible and it allows to express various approaches to uncertainty and formalizing meaning of the embodied agent.


multi-agent logic interacting agents non-linear temporal logic embodied agent 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arisha, K., Ozcan, F., Ross, R., Subrahmanian, V.S., Eiter, T., Kraus, S.: Impact: A platform for collaborating agents. IEEE Intelligent Systems 14(2), 64–72 (1999)CrossRefGoogle Scholar
  2. 2.
    Avouris, N.M.: Co-operation knowledge-based systems for environmental decision-support. Knowledge-Based Systems 8(1), 39–53 (1995)CrossRefGoogle Scholar
  3. 3.
    Babenyshev, S., Rybakov, V.: Logic of Plausibility for Discovery in Multi-agent Environment Deciding Algorithms. In: Lovrek, I., Howlett, R.J., Jain, L.C. (eds.) KES 2008, Part III. LNCS (LNAI), vol. 5179, pp. 210–217. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Babenyshev, S., Rybakov, V.: Decidability of Hybrid Logic with Local Common Knowledge Based on Linear Temporal Logic LTL. In: Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028, pp. 32–41. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Babenyshev, S., Rybakov, V.: Logic of Discovery and Knowledge: Decision Algorithm. In: Lovrek, I., Howlett, R.J., Jain, L.C. (eds.) KES 2008, Part II. LNCS (LNAI), vol. 5178, pp. 711–718. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Babenyshev, S., Rybakov, V.: Describing Evolutions of Multi-Agent Systems. In: Velásquez, J.D., Ríos, S.A., Howlett, R.J., Jain, L.C. (eds.) KES 2009, Part I. LNCS, vol. 5711, pp. 38–45. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Brachman, R.J., Schmolze, J.G.: An overview on the KL-ONE knowledge representation system. Cognitive Science 9(2), 179–226 (1985)CrossRefGoogle Scholar
  8. 8.
    Barwise, J.: Three Views of Common Knowledge. In: Vardi (ed.) Proc. Second Confeuence on Theoretical Aspects of Reasoning about Knowledge, pp. 365–379. Morgan Kaufmann, San Francisco (1988)Google Scholar
  9. 9.
    Dwork, C., Moses, Y.: Knowledge and Common Knowledge in a Byzantine Environment: Crash Failures. Information and Computation 68(2), 156–183 (1990)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning About Knowledge, p. 410. The MNT Press, Cambridge (1995)MATHGoogle Scholar
  11. 11.
    Hendler, J.: Agents and the semantic web. IEEE Intelligent Systems 16(2), 30–37 (2001)CrossRefGoogle Scholar
  12. 12.
    Kifer, M., Lozinski, L.: A Logic for Reasoning with Inconsistency. J. Automated Deduction 9, 171–115 (1992)Google Scholar
  13. 13.
    Kraus, S., Lehmann, D.L.: Knowledge, Belief, and Time. Theoretical Computer Science 98, 143–174 (1988)MathSciNetGoogle Scholar
  14. 14.
    Moses, Y., Shoham, Y.: Belief and Defeasible Knowledge. Artificial Intelligence 64(2), 299–322 (1993)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    McLean, D., Rybakov, V.: Multi-Agent Temporary Logic TS4 U K n Based at Non-linear Time and Imitating Uncertainty via Agents Interaction. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS, vol. 7895, pp. 375–384. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Nebel, B.: Reasoning and Revision in Hybrid Representation Systems. LNCS, vol. 422. Springer, Heidelberg (1990)MATHGoogle Scholar
  17. 17.
    Neiger, G., Tuttle, M.R.: Common knowledge and consistent simultaneous coordination. Distributed Computing 5(3), 334–352 (1993)Google Scholar
  18. 18.
    Nguyen, N.T., Jo, G.-S., Howlett, R.J., Jain, L.C. (eds.): KES-AMSTA 2008. LNCS (LNAI), vol. 4953. Springer, Heidelberg (2008)Google Scholar
  19. 19.
    Nguyen, N.T., Huang, D.S.: Knowledge Management for Autonomous Systems and Computational Intelligence. Journal of Universal Computer Science 15(4) (2009)Google Scholar
  20. 20.
    Nguyen, N.T., Katarzyniak, R.: Actions and Social Interactions in Multi-agent Systems. Special issue for International Journal of Knowledge and Information Systems 18(2) (2009)Google Scholar
  21. 21.
    Quantz, J., Schmitz, B.: Knowledge-based disambiguation of machine translation. Minds and Machines 9, 99–97 (1996)Google Scholar
  22. 22.
    Sakama, C., Son, T.C.: Interacting Answer Sets. In: Dix, J., Fisher, M., Novák, P. (eds.) CLIMA X. LNCS, vol. 6214, pp. 122–140. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  23. 23.
    Rybakov, V.V.: A Criterion for Admissibility of Rules in the Modal System S4 and the Intuitionistic Logic. Algebra and Logic 23(5), 369–384 (1984) (Engl. Translation)Google Scholar
  24. 24.
    Rybakov, V.V.: Admissible Logical Inference Rules. Studies in Logic and the Foundations of Mathematics, vol. 136. Elsevier Sci. Publ., North-Holland (1997) ISBN: 0444895051Google Scholar
  25. 25.
    Rybakov, V.V.: Logical Consecutions in Discrete Linear Temporal Logic. Journal of Symbolic Logic (ASL, USA) 70(4), 1137–1149 (2005)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Rybakov, V.: Until-Since Temporal Logic Based on Parallel Time with Common Past. Deciding Algorithms. In: Artemov, S., Nerode, A. (eds.) LFCS 2007. LNCS, vol. 4514, pp. 486–497. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  27. 27.
    Rybakov, V.: Logic of knowledge and discovery via interacting agents - Decision algorithm for true and satisfiable statements. Inf. Sci (Elsevier, North-Hollnd – New York) 179(11), 1608–1614 (2009)MATHMathSciNetGoogle Scholar
  28. 28.
    Rybakov, V.: Linear Temporal Logic LTK K extended by Multi-Agent Logic K n with Interacting Agents. J. Log. Comput. 19(6), 989–1017 (2009)CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Rybakov, V.V.: Representation of Knowledge and Uncertainty in Temporal Logic LTL with Since on Frames Z of Integer Numbers. In: König, A., Dengel, A., Hinkelmann, K., Kise, K., Howlett, R.J., Jain, L.C. (eds.) KES 2011, Part I. LNCS, vol. 6881, pp. 306–315. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  30. 30.
    Rybakov, V.V.: Agents’ Logics with Common Knowledge and Uncertainty: Unification Problem, Algorithm for Construction Solutions. In: König, A., Dengel, A., Hinkelmann, K., Kise, K., Howlett, R.J., Jain, L.C. (eds.) KES 2011, Part I. LNCS, vol. 6881, pp. 171–179. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  31. 31.
    Rybakov, V.: Multi-Agent Logic based on Temporary Logic \(TS4_{K_n}\) serving Web Search. In: Grana, M., et al. (eds.) Advances in Knowledge-Based and Intelligent Information and Engineering Systems, KES 2012. Frontiers in Artificial Intelligence and Applications, vol. 243, pp. 108–117 (2012)Google Scholar
  32. 32.
    Rychtyckyi, N.: DLMS: An evaluation of KL-ONE in the automobile industry. In: Aiello, L.C., Doyle, J., Shapiro, S. (eds.) Proc. of the 5-th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR 1996), pp. 588–596. Morgan Kaufmann, San Francisco, Cambridge, Mass (1996)Google Scholar
  33. 33.
    Wooldridge, M.: Reasoning about rational agents. MIT Press (2000)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.School of Computing, Mathematics and DTManchester Metropolitan UniversityManchesterU.K
  2. 2.Siberian Federal UniversityKrasnoyarskRussia

Personalised recommendations