Skip to main content

Bamboo Fiber Processing, Properties, and Applications

Abstract

Bamboo fiber is a cellulosic fiber that is regenerated from bamboo plant. It is a great prospective green fiber with outstanding biodegradable textile material, having strength comparable to conventional glass fibers. Bamboo used for fiber preparation is usually 3–4 years old. Fiber is produced through alkaline hydrolysis and multi-phase bleaching of bamboo stems and leaves followed by chemical treatment of starchy pulp generated during the process. Bamboo fiber has various micro-gaps, which make it softer than cotton and increase its moisture absorption. They are elastic, environment-friendly, and biodegradable. The fiber is bacteriostatic, antifungal, antibacterial, hypoallergenic, hydroscopic, natural deodorizer, and resistant against ultraviolet light. Furthermore, it is highly durable, stable and tough and has substantial tensile strength. Due to its versatile properties, bamboo fibers are used mainly in textile industry for making attires, towels, and bathrobes. Due to its antibacterial nature, it is used for making bandages, masks, nurse wears, and sanitary napkins. UV-proof, antibiotic and bacteriostatic curtains, television covers, and wallpapers and many other things are also prepared from bamboo fibers to lessen the effects of bacteria and harm of ultra violet radiations on human skin. Bamboo fibers are also used for decoration purpose.

Keywords

  • Bamboo
  • Bamboo fibers
  • Tensile properties
  • Mechanical properties
  • Processing

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-07641-6_2
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-07641-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 2.1

References

  • Amada S, Untao S (2001) Fracture properties of bamboo. Compos Part B Eng 32(5):451–459

    CrossRef  Google Scholar 

  • Anping L et al (2005) The regulation role of fermenting bamboo-shoots dietary fiber in the intestinal flora and constipation of mice. Science and Technology of Food Industry

    Google Scholar 

  • Aziz MA, Paramasivam P, Lee SL (1981) Prospects for natural fibre reinforced concretes in construction. Int J Cement Compos Lightweight Concrete 3(2):123–132

    CrossRef  Google Scholar 

  • Bamboo Grove (2008). Use for bamboo fabric. Available online http://www.bamboogrove.com/uses-bamboo-fabric.html. Accessed 25 Sept 2013

  • Cao Y, Wu Y (2008) Evaluation of statistical strength of bamboo fiber and mechanical properties of fiber reinforced green composites. J Cent South Univ Technol 15(1):564–567

    CrossRef  Google Scholar 

  • Chand N, Jain D, Nigrawal A (2006) Investigation on gradient dielectric characteristics of bamboo (Dentroclamus strictus). J Appl Polym Sci 102(1):380–386

    CAS  CrossRef  Google Scholar 

  • Chattopadhyay SK, Khandal RK, Uppaluri R, Ghoshal AK (2010) Bamboo fiber reinforced polypropylene composites and their mechanical, thermal, and morphological properties. J Appl Polym Sci 119(3):1619–1626

    CrossRef  Google Scholar 

  • Chen X, Guo Q, Mi Y (1998) Bamboo fiber-reinforced polypropylene composites: a study of the mechanical properties. J Appl Polym Sci 69(10):1891–1899

    CAS  CrossRef  Google Scholar 

  • Chen H, Miao M, Ding X (2009) Influence of moisture absorption on the interfacial strength of bamboo/vinyl ester composites. Compos Part A Appl Sci Manuf 40(12):2013–2019

    CrossRef  Google Scholar 

  • Coutts RSP, Ni Y (1995) Autoclaved bamboo pulp fibre reinforced cement. Cement Concrete Compos 17(2):99–106

    CAS  CrossRef  Google Scholar 

  • Das M, Chakraborty D (2008) Evaluation of improvement of physical and mechanical properties of bamboo fibers due to alkali treatment. J Appl Polym Sci 107(1):522–527

    CAS  CrossRef  Google Scholar 

  • Das M, Pal A, Chakraborty D (2006) Effects of mercerization of bamboo strips on mechanical properties of unidirectional bamboo–novolac composites. J Appl Polym Sci 100(1):238–244

    CAS  CrossRef  Google Scholar 

  • Deshpande AP, Rao MB, Rao CL (2000) Extraction of bamboo fibers and their use as reinforcement in polymeric composites. J Appl Polym Sci 76(1):83–92

    CAS  CrossRef  Google Scholar 

  • Dieu TV, Liem NT, Mai TT, Tung NH (2004) Study on fabrication of BMC laminates based on unsaturated polyester resin reinforced by hybrid bamboo/glass fibers. JSME Int J Ser A Solid Mech Mater Eng 47(4):570–573

    CAS  CrossRef  Google Scholar 

  • Diver S (2001) Bamboo: a multipurpose Agroforestry crop. Appropriate technology transfer for rural area. http://www.attra.ncat.org

  • Erdumlu N, Ozipek B (2008) Investigation of regenerated bamboo fiber and yarn characteristics. Fiber Text East Eur 16(4):43–47

    CAS  Google Scholar 

  • Fukushima F, Funada R, Sugiyama J, Takebe K, Umezawa T, Yamamoto H (2003) Secondary xylem formation introduction to biomass science. Kaiseisha press, Otsu, p 65

    Google Scholar 

  • Gang X, Hong Z, Jian H (2000) Leaching method of flavone from bamboo leaves. Chin J Anal Chem 28:1055

    Google Scholar 

  • Ghavami K (2005) Bamboo as reinforcement in structural concrete elements. Cement Concrete Compos 27(6):637–649

    CAS  CrossRef  Google Scholar 

  • Grame TC (1962) Bamboo and music: a new approach to organology. Ethnomusicology 6(1):8–14

    CrossRef  Google Scholar 

  • Halvorson JJ, Cassida KA, Turner KE, Belesky DP (2011) Nutritive value of bamboo as browse for livestock. Renew Agric Food Syst 26(2):161–170

    CrossRef  Google Scholar 

  • Han G, Lei Y, Wu Q, Kojima Y, Suzuki S (2008) Bamboo–fiber filled high density polyethylene composites: effect of coupling treatment and nanoclay. J Polym Environ 16(2):123–130

    CAS  CrossRef  Google Scholar 

  • Hengshu Z (2004) Study on the characteristics of bamboo fiber in spinning and weaving. J Textile Res 25:91–93

    Google Scholar 

  • Huang X, Netravali A (2009) Biodegradable green composites made using bamboo micro/nano-fibrils and chemically modified soy protein resin. Compos Sci Technol 69(7–8):1009–1015

    CAS  CrossRef  Google Scholar 

  • Ismail H (2003) The effects of filler loading and a silane coupling agent on the dynamic properties and swelling behaviour of bamboo filled natural rubber compounds. J Elastomer Plast 35(2):149–159

    CAS  CrossRef  Google Scholar 

  • Ismail H, Shuhelmy S, Edyham MR (2002) The effects of a silane coupling agent on curing characteristics and mechanical properties of bamboo fibre filled natural rubber composites. Eur Polym J 38(1):39–47

    CAS  CrossRef  Google Scholar 

  • Jain S, Kumar R, Jindal UC (1992) Mechanical behavior of bamboo and bamboo composite. J Mater Sci 27:4598–4604

    CAS  CrossRef  Google Scholar 

  • Jain S, Jindal UC, Kumar R (1993) Development and fracture mechanism of the bamboo/polyester resin composite. J Mater Sci Lett 12(8):558–560

    CAS  Google Scholar 

  • Jayanetti L (2000) Bamboo in construction. In: Bamboo international symposium, Chiang Mai, pp 164–174

    Google Scholar 

  • Jindal UC (1986) Development and testing of bamboo-fibres reinforced plastic composites. J Compos Mater 20(1):19–29

    CAS  CrossRef  Google Scholar 

  • Jindal UC (1988) Tensile strength of bamboo fiber reinforced plastic composites with different stacking sequences. In: Proceedings of International Bamboo Workshop, Cochin, pp 231–234

    Google Scholar 

  • Kantarelis E, Liu J, Yang W, Blasiak W (2010) Sustainable valorization of bamboo via high-temperature steam pyrolysis for energy production and added value materials. Energy Fuels 24(11):6142–6150

    CAS  CrossRef  Google Scholar 

  • Kefu YRC (2002) Performance and potential of bamboo as papermaking material. China Forests Prod Ind 3:2

    Google Scholar 

  • Kushwaha PK, Kumar R (2009) Studies on water absorption of bamboo-epoxy composites: effect of silane treatment of mercerized bamboo. J Appl Polym Sci 115(3):1846–1852

    CrossRef  Google Scholar 

  • Kushwaha PK, Kumar R (2010) Effect of silanes on mechanical properties of bamboo fiber-epoxy composites. J Reinf Plast Compos 29(5):718–724

    CAS  CrossRef  Google Scholar 

  • Lakkad SC, Patel JM (1981) Mechanical properties of bamboo, a natural composite. Fibre Sci Technol 14(4):319–322

    CrossRef  Google Scholar 

  • Lee S-H, Ohkita T (2005) Bamboo fiber (BF)-filled poly(butylenes succinate) bio-composite—effect of BF-e-MA on the properties and crystallization kinetics. Holzforschung 58(5):537–543

    Google Scholar 

  • Lee S, Wang S (2006) Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent. Compos Part A Appl Sci Manuf 37(1):80–91

    CAS  CrossRef  Google Scholar 

  • Lee S, Ohkita T, Kitagawa K (2005) Eco-composite from poly(lactic acid) and bamboo fiber. Holzforschung 58(5):529–536

    Google Scholar 

  • Lee S, Chun S, Doh G, Kang I, Lee S, Paik K (2009) Influence of chemical modification and filler loading on fundamental properties of bamboo fibers reinforced polypropylene composites. J Compos Mater 43(15):1639–1657

    CAS  CrossRef  Google Scholar 

  • Li X (2004) Physical, chemical, and mechanical properties of bamboo and its utilization potential for fiberboard manufacturing. Louisiana State University, Louisiana

    Google Scholar 

  • Li SH, Fu SY, Zhou BL, Zeng QY, Bao XR (1994) Reformed bamboo and reformed bamboo/aluminium composite. J Mater Sci 29(22):5990–5996

    CAS  CrossRef  Google Scholar 

  • Li Z, Liu C, Yu T (2002) Laminate of reformed bamboo and extruded fiber-reinforced cementitious plate. J Mater Civ Eng 14(5):259–365

    Google Scholar 

  • Li M, Fan Y, Xu F, Sun R, Zhang X (2010) Cold sodium hydroxide/urea based pretreatment of bamboo for bioethanol production: characterization of the cellulose rich fraction. Ind Crop Prods 32(3):551–559

    CAS  CrossRef  Google Scholar 

  • Liese W (1992) The structure of bamboo in relation to its properties and utilization. In: International symposium on industrial use of bamboo, Beijing, China

    Google Scholar 

  • Lima HC Jr, Willrich FL, Barbosa NP, Rosa MA, Cunha BS (2008) Durability analysis of bamboo as concrete reinforcement. Mater Struct 41(5):981–989

    CrossRef  Google Scholar 

  • Lin C, Tsai M, Wang S (2006) Nondestructive evaluation techniques for assessing dynamic modulus of elasticity of moso bamboo (Phyllosachys edulis) lamina. J Wood Sci 52(4):342–347

    CrossRef  Google Scholar 

  • Liu Y, Hu H (2008) X-ray diffraction study of bamboo fibers treated with NaOH. Fiber Polym 9(6):735–739

    CAS  CrossRef  Google Scholar 

  • Liu L, Wang Q, Cheng L, Qian J, Yu J (2011) Modification of natural bamboo fibers for textile applications. Fibers Polym 12(1):95–103

    CAS  CrossRef  Google Scholar 

  • Low IM, Che ZY, Latella BA, Sim KS (2006) Mechanical and fracture properties of bamboo. Key Eng Mater 312(15):15–20

    CrossRef  Google Scholar 

  • Majumdar A, Makhupadhyay S, Yadav R (2010) Thermal properties of knitted fabrics made from cotton and regenerated bamboo cellulosic fibers. Int J Therm Sci 49(10):2042–2048

    CrossRef  Google Scholar 

  • Mohanty S, Nayak SK (2010) Short bamboo fiber-reinforced HDPE composites: influence of fiber content and modification on strength of the composite. J Reinf Plast Compos 29(14):2199–2210

    CAS  CrossRef  Google Scholar 

  • Naoya Y, Kazuya O, Toori F (2004) Improvement of bending strength, fracture toughness and impact strength of bamboo fiber composites by adding micro-fibrillated cellulose as an enhancer. Bamboo J 21:35–45

    Google Scholar 

  • Nayak SK, Mohanty S, Samal SK (2009) Influence of short bamboo/glass fiber on the thermal, dynamic mechanical and rheological properties of polypropylene hybrid composites. Mater Sci Eng A 523(1–2):32–38

    CrossRef  Google Scholar 

  • Nugroho N, Ando N (2000) Development of structural composite products made from bamboo I: fundamental properties of bamboo zephyr board. J Wood Sci 46(1):68–74

    CrossRef  Google Scholar 

  • Obataya E, Kitin P, Yamauchi H (2007) Bending characteristics of bamboo (Phyllostachys pubescens) with respect to its fiber–foam composite structure. Wood Sci Technol 41(5):385–400

    CAS  CrossRef  Google Scholar 

  • Ogihara S, Okada A, Kobayashi S (2008) Mechanical properties in a bamboo fiber/PBS biodegradable composite. J Solid Mech Mater Eng 2(3):291–299

    CrossRef  Google Scholar 

  • Okubo K, Fujii T, Yamamoto Y (2004) Development of bamboo-based polymer composites and their mechanical properties. Compos Part A Appl Sci Manuf 35(3):377–383

    CrossRef  Google Scholar 

  • Perdue RE (1958) Arundo donax—source of musical reeds and industrial cellulose. Economic Bot 12(4):368–404

    CrossRef  Google Scholar 

  • Qin-Rong T (2006) Development and application of PET staple fiber modified by active charcoal. Synth Fiber China 3:10

    Google Scholar 

  • Rajulu AV, Baksh SA, Reddy GR, Chary KN (1998) Chemical resistance and tensile properties of short bamboo fiber reinforced epoxy composites. J Reinf Plast Compos 17(17):1507–1511

    CAS  Google Scholar 

  • Rajulu AV, Chary KN, Reddy GR, Meng YZ (2004) Void content, density and weight reduction studies on short bamboo fiber–epoxy composites. J Reinf Plast Compos 23(2):127–130

    CAS  CrossRef  Google Scholar 

  • Ramaswamy HS, Ahuja BM, Krishnamoorthy S (1983) Behaviour of concrete reinforced with jute, coir and bamboo fibers. Int J Cement Compos Lightweight Concrete 5(1):3–13

    CrossRef  Google Scholar 

  • Rao KMM, Rao KM (2007) Extraction and tensile properties of natural fibers: vakka, date and bamboo. Compos Struct 77(3):288–295

    CrossRef  Google Scholar 

  • Ray AK, Mondal S, Das SK, Ramachandrarao P (2005) Bamboo—a functionally graded composite-correlation between microstructure and mechanical strength. J Mater Sci 40(19):5249–5253

    CAS  CrossRef  Google Scholar 

  • Scurlock JMO, Dayton DC, Hames B (2000) Bamboo: an overlooked biomass resource. Biomass Bioenergy 19(4):229–244

    CAS  CrossRef  Google Scholar 

  • Shao Z, Fang C, Huang S, Tian G (2010) Tensile properties of Moso bamboo (Phyllostachys pubescens) and its components with respect to its fiber-reinforced composite structure. Wood Sci Technol 44(4):655–666

    CAS  CrossRef  Google Scholar 

  • Sheng-Xia H, Li-Na M, Zhou-Ping S, Xue-Hui Z (2005) Relationship between microstructure characteristics and mechanical properties of moso bamboo. J Anhui Agric Univ 24:560–568

    Google Scholar 

  • Shih Y (2007) Mechanical and thermal properties of waste water bamboo husk fiber reinforced epoxy composites. Mater Sci Eng A 445–446:289–295

    CrossRef  Google Scholar 

  • Shih Y, Lee W, Jeng R, Huang C (2006) Water bamboo husk-reinforced poly(butylene succinate) biodegradable composites. J Appl Polym Sci 99(1):188–199

    CAS  CrossRef  Google Scholar 

  • Subic A, Mouritz A, Troynikov O (2009) Sustainable design and environmental impact of materials in sports products. Sports Technol 2(3–4):67–79

    Google Scholar 

  • Thwe MM, Liao K (2002a) Effects of environmental aging on mechanical properties of bamboo-glass fiber reinforced polymer matrix hybrid composites. Compos Part A Appl Sci Manuf 33(1):43–52

    CrossRef  Google Scholar 

  • Thwe MM, Liao K (2002b) Tensile behaviour of modified bamboo–glass fibre reinforced hybrid composites. Plast Rubber Compos 31(10):422–431

    CAS  CrossRef  Google Scholar 

  • Thwe MM, Liao K (2003) Durability of bamboo-glass fiber reinforced polymer matrix hybrid composites. Compos Sci Technol 63(3–4):375–387

    CAS  CrossRef  Google Scholar 

  • Tokoro R, Vu DM, Okubo K, Tanaka T, Fujii T, Fujiura T (2008) How to improve mechanical properties of polylactic acid with bamboo fibers. J Mater Sci 43(2):775–787

    CAS  CrossRef  Google Scholar 

  • Tung NH, Yamamoto H, Matsuoka T, Fujii T (2004) Effect of surface treatment on interfacial strength between bamboo fiber and PP resin. JSME Int J 47(4):561–565

    CAS  CrossRef  Google Scholar 

  • Vena PF, Gorgens JF, Rypstra T (2010) Hemicelluloses extraction from giant bamboo prior to kraft and soda AQ pulping to produce paper pulps, value added bio polymers and bio ethanol. Cellulose Chem Technol 44(4–6):153–163

    CAS  Google Scholar 

  • Wegst UGK (2008) Bamboo and wood in musical instruments. Annu Rev Mater Res 38:323–349

    CrossRef  Google Scholar 

  • Yao W, Li Z (2003) Flexural behavior of bamboo–fiber-reinforced mortar laminates. Cement Concrete Res 33(1):15–19

    CAS  CrossRef  Google Scholar 

  • Yao W, Zhang W (2011) Research on manufacturing technology and application of natural bamboo fiber, vol 2. IEEE

    Google Scholar 

  • Yi LJYLW (2004) Application and property test of bamboo cellulose fibre. Cotton Textile Technol 2:12

    Google Scholar 

  • Youngsi J (2007) Investigation of bamboo as reinforcement in concrete. Res Common Libr 56:12Z

    Google Scholar 

  • Yu Y, Fei B, Zhang B, Yu X (2007) Cell-wall mechanical properties of bamboo investigated by in-situ imaging nanoindentation. Wood Fiber Sci 39(4):527–535

    CAS  Google Scholar 

  • Yueping W, Ge W, Haitao C, Genlin T, Zheng L, Feng XQ, Xiangqi Z, Xiaojun H, Xushan G (2010) Structures of bamboo fiber for textiles. Text Res J 80(4):334–343

    CrossRef  Google Scholar 

  • Zhong-Kai Y, Li-Min S, Jian-Xin J, Xu-Shan G, Yue-ping W, Li-wei Z (2005) Studies on the chemical contents and anti-bacterial performance of natural bamboo fiber. China Fiber Prod 6

    Google Scholar 

  • Zou L, Jin H, Lu W, Li X (2009) Nanoscale structural and mechanical characterization of the cell wall of bamboo fibers. Mater Sci Eng C 29(4):1375–1379

    CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alvina Gul Kazi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Imadi, S.R., Mahmood, I., Kazi, A.G. (2014). Bamboo Fiber Processing, Properties, and Applications. In: Hakeem, K., Jawaid, M., Rashid, U. (eds) Biomass and Bioenergy. Springer, Cham. https://doi.org/10.1007/978-3-319-07641-6_2

Download citation