Skip to main content

Production of Algal Biomass

Abstract

Among renewable resources, algae have proven to be an attractive feedstock for rapid generation of carbohydrates and lipids by utilizing its photosynthetic ability to present itself as an alternative energy source. Different species of algae, being environmental friendly, are strong candidates for generation of biomass, and are used in production of biogas and biofuel. Continuous efforts are being made to increase its large-scale production by application of specific methods chosen on the basis of desired downstream processing and final application of algal biomass. Biomass production is dependent upon cultivation methods for harvesting, followed by quantification of biochemical composition of biomass. Harvesting of algal mass is a major concern playing crucial role in determination of process economy required for further applications including biofuel production. Although algal biomass appears to be an efficient substrate for biofuel production, the progress is hindered by ammonia inhibition and ion toxicity. Further research is needed to replace the continuously depleting energy sources with renewable, eco-friendly sources.

Keywords

  • Algal biomass
  • Biofuels
  • Feedstock
  • Bioreactors
  • Algae

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-07641-6_13
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-07641-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)

References

  • Alzate MR, Munoz R, Rogalla F, Fdz-Polanco F, Perez-Elvira SI (2012) Biochemical methane potential of microalgae: influence of substrate to inoculum ratio, biomass concentration and pretreatment. Bioresour Technol 123:488–494

    CAS  PubMed  CrossRef  Google Scholar 

  • Angelidaki I, Ahring BK (1993) Thermophilic anaerobic digestion of livestock waste: the effect of ammonia. Appl Microbiol Biotechnol 38:560–564

    CAS  CrossRef  Google Scholar 

  • Azarian GH, Mesdaghinia AR, Vaezi F, Nabizadeh R, Nematollahi D (2007) Algae removal by electro-coagulation process, application for treatment of the effluent from an industrial wastewater treatment plant. Iran J Public Health 36:57–64

    CAS  Google Scholar 

  • Benemann JR (1997) CO2 mitigation with microalgal systems. Energy Convers Manag 38:475–479

    CrossRef  Google Scholar 

  • Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70:313–321

    CAS  CrossRef  Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14:557–577

    CAS  CrossRef  Google Scholar 

  • Burlew JS (ed) (1953) Algal culture from laboratory to pilot plant. Carnegie Institution of Washington, Washington, DC, p 357

    Google Scholar 

  • Chae SR, Hwang EJ, Shin HS (2006) Single cell protein production of Euglena gracili sand carbon dioxide fixation in an innovative photobioreactor. Bioresour Technol 97:322–329

    CAS  PubMed  CrossRef  Google Scholar 

  • Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99:4044–4064

    CAS  PubMed  CrossRef  Google Scholar 

  • Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102:71–81

    CAS  PubMed  CrossRef  Google Scholar 

  • Chinnasamy S, Ramakrishnan B, Bhatnagar A, Das KC (2009) Biomass production potential of a wastewater alga Chlorella vulgaris ARC 1 under elevated levels of CO2and temperature. Int J Mol Sci 10:518–532

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131

    CAS  PubMed  CrossRef  Google Scholar 

  • Chorus I, Bartram J (1999) Toxic cyanobacteria in water: a guide to their public health consequences, monitoring, and management. E & FN Spon, New York (Published on behalf of the World Health Organization)

    CrossRef  Google Scholar 

  • Christenson L, Sims R (2011) Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv 29:686–702

    CAS  PubMed  CrossRef  Google Scholar 

  • Chynoweth DP, Owens JM, Legrand R (2001) Renewable methane from anaerobic digestion of biomass. Renew Energy 22:1–8

    CAS  CrossRef  Google Scholar 

  • Dallaire V, Lessard P, Vandenberg G, de la Noüe J (2007) Effect of algal incorporation on growth, survival and carcass composition of rainbow trout (Oncorhynchus mykiss) fry. Bioresour Technol 98:1433–1439

    CAS  PubMed  CrossRef  Google Scholar 

  • de Godos I, Guzman HO, Soto R, García-Encina PA, Becares E, Muñoz R et al (2011) Coagulation/flocculation-based removal of algal–bacterial biomass from piggery wastewater treatment. Bioresour Technol 102:923–927

    CAS  PubMed  CrossRef  Google Scholar 

  • Demirbas A (2010) Use of algae as biofuel sources, energy conversion and management, vol 51, pp 2738–2749. www.elsevier.com/locate/enconman

  • Gerardi MH (2003) The microbiology of anaerobic digesters. Wiley, Hoboken, NJ

    CrossRef  Google Scholar 

  • Goyal HB, Seal D, Saxena RC (2008) Bio-fuels from thermochemical conversion of renewable resources: a review. Renew Sustain Energy Rev 12(2):504–517

    CAS  CrossRef  Google Scholar 

  • Grima EM, Belarbi EH, Fernandez FGA, Medina AR, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515

    CrossRef  Google Scholar 

  • Jiang L, Luo S, Fan X, Yang Z, Guo R (2011) Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of CO2. Appl Energy 88:3336–3341

    CAS  CrossRef  Google Scholar 

  • Karthikeyan S, Balasubramanian R, Iyer CSP (2007) Evaluation of the marine algae Ulva fasciata and Sargassum sp. for the biosorption of Cu(II) from aqueous solutions. Bioresour Technol 98:452–455

    CAS  PubMed  CrossRef  Google Scholar 

  • Koster IW, Lettinga G (1988) Anaerobic digestion at extreme ammonia concentrations. Biol Wastes 25:51–59

    CAS  CrossRef  Google Scholar 

  • Lodeiro P, Cordero B, Barriada JL, Herrero R, Sastre de Vincente ME (2005) Biosorption of cadmium by biomass of brown marine macroalgae. Bioresour Technol 96:1796–1803

    CAS  PubMed  CrossRef  Google Scholar 

  • Lorenz RT, Cysewski GR (2000) Commercial 7 for Haematococcus microalgae as a natural source of astaxanthin. TIBTECH 18:160–167

    CAS  CrossRef  Google Scholar 

  • Malik A, Prajapati SK (2012) Algae a substrate for fermentative biogas production. In: National convention on “current and emerging trends in Indian biogas and bio-fertilizers development”, BDTC, CRDT, Indian Institute of Technology Delhi, New Delhi, India 15–17 Sept 2012

    Google Scholar 

  • McKendry P (2002) Energy production from biomass (Part 2). Conversion technologies. Bioresour Technol 83(1):47–54

    CAS  PubMed  CrossRef  Google Scholar 

  • Muller-Feuga A (2000) The role of microalgae in aquaculture: situation and trends. J Appl Phycol 12:527–534

    CrossRef  Google Scholar 

  • Mussgnug JH, Klassen V, Schluter A, Kruse O (2010) Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J Biotechnol 150:51–56

    CAS  PubMed  CrossRef  Google Scholar 

  • Prajapati SK, Kaushik P, Choudhary P, Malik A, Vijay VK (2012) Role of algae in wastewater treatment and fermentative biogas production. In: International Science Congress, Vrindavan, Mathura, 8–9 Dec 2012

    Google Scholar 

  • Prajapati SK, Kaushik P, Malik A, Vijay VK (2013) Phycoremediation and biogas potential of native algal isolates from soil and wastewater. Bioresour Technol 135:232–238

    CAS  PubMed  CrossRef  Google Scholar 

  • Richmond A (2004) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science, Oxford

    Google Scholar 

  • Shanmugam P, Horan NJ (2008) Simple and rapid methods to evaluate methane potential and biomass yield for a range of mixed solid wastes. Bioresour Technol 100:471–474

    PubMed  CrossRef  Google Scholar 

  • Shanmugam P, Horan NJ (2009) Optimising the biogas production from leather fleshing waste by co-digestion with MSW. Bioresour Technol 100:4117–4120

    CAS  PubMed  CrossRef  Google Scholar 

  • Sialve B, Nicolas B, Olivier B (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27:409–416

    CAS  PubMed  CrossRef  Google Scholar 

  • Sukenik A, Shelef G (1984) Algal autoflocculation—verification and proposed mechanism. Biotechnol Bioeng 26:142–147

    CAS  PubMed  CrossRef  Google Scholar 

  • Sung KD, Lee JS, Shin CS, Park SC, Choi MJ (1999) CO2 fixation by Chlorella sp. KR-1 and its cultural characteristics. Bioresour Technol 68:269–273

    CAS  CrossRef  Google Scholar 

  • Uduman N, Qi Y, Danquah M, Forde G, Hoadley A (2010) Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. J Renew Sustain Energy 2(1):12701

    CrossRef  Google Scholar 

  • Vandamme D, Pontes SCUV, Goiris K, Foubert I, Pinoy LJJ, Muylaert K (2011) Evaluation of electro-coagulation–flocculation for harvesting marine and freshwater microalgae. Biotechnol Bioeng 108:2320–2329

    CAS  PubMed  CrossRef  Google Scholar 

  • Wilde EW, Benemann JR (1993) Bioremoval of heavy metals by the use of microalgae. Biotechnol Adv 11:781–812

    CAS  PubMed  CrossRef  Google Scholar 

  • Yoo C, Jun SY, Lee JY, Ahn CY, Oh HM (2010) Selection of microalgae for lipid production under high levels carbon dioxide. Bioresour Technol 101(suppl 1):S71–S74

    CAS  PubMed  CrossRef  Google Scholar 

  • Yoon RH, Luttrell GH (1989) The effect of bubble size on fine particle flotation. Miner Process Extract Metal Rev 5:101–122

    CrossRef  Google Scholar 

  • Zamalloa C, Boon N, Verstraete W (2012) Anaerobic digestibility of Scenedesmus obliquus and Phaeodactylum tricornutum under mesophilic and thermophilic conditions. Appl Energy 92:733–738

    CAS  CrossRef  Google Scholar 

  • Zhong W, Zhongzhi Z, Yijing L, Wei Q, Meng X, Min Z (2012) Biogas productivity by co-digesting Taihu blue algae with corn straw as an external carbon source. Bioresour Technol 114:281–286

    CAS  PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alvina Gul Kazi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Majid, M., Shafqat, S., Inam, H., Hashmi, U., Kazi, A.G. (2014). Production of Algal Biomass. In: Hakeem, K., Jawaid, M., Rashid, U. (eds) Biomass and Bioenergy. Springer, Cham. https://doi.org/10.1007/978-3-319-07641-6_13

Download citation