Advertisement

Methodological Framework for Control Centres Evaluation and Optimization

  • Ana Almeida
  • Francisco Rebelo
  • Paulo Noriega
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8520)

Abstract

Workers in control centers often pay attention to a large amount of information from several sources and must be able to identify, at all times, the system state to, in an emergency, take correct decisions. In this context, this article aims to present a preliminary framework for the development of a virtual reality simulator for the study of control centres in order to prevent Human errors occurrence. It will also be presented an example of the framework use to study the excessive number of alarms in a railway control centres. The paper discuss the next steps of this work, the evaluation of it sensitivity and the usability characteristics of the VR simulator inside to our framework.

Keywords

framework virtual reality control centre simulator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cañas, J.: Ergonomía en los sistemas de trabajo. UGT-CEC. Granada (2011)Google Scholar
  2. 2.
    Wilms, M.S., Zeilstra, M.P.: Subjective mental workload of Dutch train dispatchers: Validation of IWS in a practical setting. In: Dadashi, N., Scott, A., Wilson, J.R., Mills, A. (eds.), pp. 641–650. Taylor & Francis, London (2013)Google Scholar
  3. 3.
    Balfe, N., Wilson, J.R., Sharples, S., Clarke, T.: Effects of Level of Signalling Automation on Workload and Performance. In: Wilson, J.R., Mills, A., Clarke, T., Rajan, J., Dadashi, N. (eds.), pp. 404–411. Taylor & Francis (2012)Google Scholar
  4. 4.
    Hayden-Smith, N.: The Future of Signaller Workload Assessments in Automated World. In: Dadashi, N., Scott, A., Wilson, J.R., Mills, A. (eds.), pp. 419–426. Taylor & Francis, London (2013)Google Scholar
  5. 5.
    Shanahan, P., Gregory, D., Lowe, E.: Signaller Workload Exploration and Assessment Tool (SWEAT). In: Wilson, J.R., Mills, A., Clarke, T., Rajan, J., Dadashi, N. (eds.), pp. 434–443. Taylor & Francis (2012)Google Scholar
  6. 6.
    Weeda, C., Zeilstra, M.: Prediction of Mental Workload of Monitoring Task. In: Dadashi, N., Scott, A., Wilson, J.R., Mills, A. (eds.), pp. 633–640. Taylor & Francis, London (2013)Google Scholar
  7. 7.
    Zeilstra, M., Bruijn, D.W., Van Der Weide, R.: Development and Implementation of a Predictive Tool for Optimizing Workload of Train Dispatcher. In: Wilson, J.R., Mills, A., Clarke, T., Rajan, J., Dadashi, N. (eds.), pp. 444–453. Taylor & Francis (2012)Google Scholar
  8. 8.
    Read, G.J.M., Lenné, M.G., Moss, S.A.: Association Between Task, Training and Social Environmental Factors and Error Types Involved in Rail Incidents and Accidents. Accident Analysis and Prevention 48, 416–422 (2012)CrossRefGoogle Scholar
  9. 9.
    Baysari, M.T., Mcintoch, A.S., Wilson, J.R.: Understanding the Human Factors Contribution to Railway Accidents and Incidents in Australia. Accident Analysis and Prevention 40, 1750–1757 (2008)CrossRefGoogle Scholar
  10. 10.
    Nicholl, A.: Environmental Factors in the Control Room. In: Ivergard, T., Hunt, B. (eds.), 2nd edn., pp. 177–199 (2009)Google Scholar
  11. 11.
    Hénique, E., Lindegaard, S., Hunt, B.: Design of Large and Complex Display Systems. In: Ivergard, T., Hunt, B. (eds.), 2nd edn., pp. 83–130 (2009)Google Scholar
  12. 12.
    Maag, C., Schmitz, M.: Assessment of Train Drivers’ Performance in a Driving Simulator. In: Wilson, J.R., Mills, A., Clarke, T., Rajan, J., Dadashi, N. (eds.), pp. 136–145. Taylor & Francis (2012)Google Scholar
  13. 13.
    Albrecht, T., Gassel, C.: Efficient Control of Passenger Railways: Testing Advice and Information System in a Driving Simulator. In: Wilson, J.R., Mills, A., Clarke, T., Rajan, J., Dadashi, N. (eds.), pp. 117–125. Taylor & Francis (2012)Google Scholar
  14. 14.
    Egea, B.G., Holgado, P.C., Suárez, C.G.: Human Factors Integration in Rail Simulators. In: Wilson, J.R., Mills, A., Clarke, T., Rajan, J., Dadashi, N. (eds.), pp. 188–193. Taylor & Francis (2012)Google Scholar
  15. 15.
    Hammerl, M., et al.: From a Testing Laboratory for Railway Technical Components to a Human Factors Simulation Environment. In: Wilson, J.R., Mills, A., Clarke, T., Rajan, J., Dadashi, N. (eds.), pp. 154–164. Taylor & Francis (2012)Google Scholar
  16. 16.
    Naweed, A., Hockey, G.R.J., Clarke, S.D.: Designing Simulator Tools for Rail Research: The Case Study of a Train Driving Microworld. Applied Ergonomics 44, 445–454 (2013)CrossRefGoogle Scholar
  17. 17.
    Rentzch, M., et al.: Simulator Tests of a Harmonised European Driver’s Desk. In: Wilson, J.R., Mills, A., Clarke, T., Rajan, J., Dadashi, N. (eds.), pp. 146–153. Taylor & Francis (2012)Google Scholar
  18. 18.
    Wada, K., Ueda, M.: Emotional Responses to Trouble Events on a Train-Driving Simulator. In: Human Factors and Ergonomics Society 56th Annual Meeting, pp. 1997–2001 (2012)Google Scholar
  19. 19.
    Yates, T.K., Sharples, S.: Determining the Effect of Simulator Configuration in a VR Train Driver System. In: Wilson, J.R., Mills, A., Clarke, T., Rajan, J., Dadashi, N. (eds.), pp. 107–116. Taylor & Francis (2012)Google Scholar
  20. 20.
    Burdea, G., Coiffet, P.: Virtual Reality Technology, 2nd edn. John Wiley & Sons (2003)Google Scholar
  21. 21.
  22. 22.
    Patrick, C., Balfe, N., Wilson, J.R., Houghton, R.: Signaller information use in traffic regulation decisions. In: Dadashi, N., Scott, A., Wilson, J.R., Mills, A. (eds.), pp. 409–418. Taylor & Francis, London (2013)Google Scholar
  23. 23.
    Bransby, M.L., Jenkinson, J.: The Management of Alarm System: A Review of Current Practice in the Procurement, Design and Management of Alarm System in the Chemical and Power Industries. Health and Safety Executive (1998)Google Scholar
  24. 24.
    Dadashi, N., Wilson, J.R., Golightly, D., Sharples, S., Clarke, T.: Practical use of Work Analysis to Support Rail Electrical Control Rooms: A Case of Alarm Handling. J. Rail and Rapid Transit. 227, 148–160 (2012)CrossRefGoogle Scholar
  25. 25.
    Hollifield, B.R., Habibi, E.: The History and Nature of the Alarm Problem. In: Hollifield, B.R., Habibi, E. (eds.), pp. 7–12 (2007)Google Scholar
  26. 26.
    Huang, F.-H., et al.: Evaluation and comparison of alarm reset modes in advanced control room of nuclear power plants. Safety Science 44, 935–946 (2006)CrossRefGoogle Scholar
  27. 27.
    Hollifield, B.R., Habibi, E.: How do you Justify Alarm Management? In: Hollifield, B.R., Habibi, E. (eds.), pp. 13–18 (2007)Google Scholar
  28. 28.
    Hollifield, B.R., Habibi, E.: What Should be an Alarm? In: Hollifield, B.R., Habibi, E. (eds.), pp. 19–26 (2007)Google Scholar
  29. 29.
    Woods, D.D.: The Alarm Problem and Directed Attention in Dynamic Fault Management. Ergonomics 38, 2371–2393 (1995)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ana Almeida
    • 1
    • 2
    • 3
  • Francisco Rebelo
    • 1
    • 2
  • Paulo Noriega
    • 1
    • 2
  1. 1.Centre for Architecture, Urban Planning and Design (CIAUD)LisboaPortugal
  2. 2.Ergonomics LaboratoryFMH-Universidade de LisboaCruz QuebradaPortugal
  3. 3.CAPES FoundationMinistry of Education of BrazilBrasíliaBrazil

Personalised recommendations