Skip to main content

Quartet Partitioning Reveals Hybrid Origins of the Vertebrate

  • Chapter
  • First Online:
  • 2463 Accesses

Abstract

It is generally accepted that humans and sea urchins are deuterostomes and that fruit flies and jelly fish are outgroups. However, when we analyzed proteins from the genomes of these four species and submitted them to 4 taxa phylogenetic analysis, we found that, while as expected, most of the proteins (563) supported the notion of human and sea urchin in one clade and jelly fish and fruit flies in the other clade (Tree1), a large number of proteins (353) showed human and fruit fly in one clade with the sea urchin and jelly fish in the other (Tree3). Homologs were found in the genomes from 5 other metazoa. Tree1 proteins resulted in the expected 9 taxa tree, while the Tree3 proteins show vertebrates, to the exclusion of the other chordates, in the protostome clade. The two 9 taxa trees were fused into a single most parsimonious net that supports an introgression event between a vertebrate ancestor and a primitive protostome.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Acorn worm site. ftp://ftp.hgsc.bcm.tmc.edu/pub/data/Skowalevskii/fasta

  • Baroni M, Grünewald S, Moulton V, Semple C (2005) Bounding the number of hybridisation events for a consistent evolutionary history. J Math Biol 51:171–182

    Article  PubMed  Google Scholar 

  • Blair JE, Blair Hedges S (2005) Molecular phylogeny and divergence times of deuterostome animals. Mol Biol Evol 22:2275–2284

    Article  CAS  PubMed  Google Scholar 

  • Blair JE, Ikeo K, Gojobori T, Hedges SB (2002) The evolutionary position of nematodes. BMC Evol Biol 8(2):7

    Article  Google Scholar 

  • C. elegans Sequencing Consortium (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 11:2012–2018

    Article  Google Scholar 

  • Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552

    Article  CAS  PubMed  Google Scholar 

  • Celniker et al (2002) Finishing a whole-genome shotgun: release 3 of the Drosophila melanogaster euchromatic genome sequence. Genome Biol 3:1–0079

    Article  Google Scholar 

  • Collins J, Linz S, Semple C (2011) Quantifying hybridization in realistic time. J Comput Biol 18:1305–1318

    Article  CAS  PubMed  Google Scholar 

  • Delsuc F, Brinkmann H, Chourrout D, Philippe H (2006) Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 439:965–968

    Article  CAS  PubMed  Google Scholar 

  • DeSalle R, Schierwater B (2008) An even newer animal phylogeny. BioEssays 30:1043–1047

    Article  CAS  PubMed  Google Scholar 

  • Douzery EJ, Snell EA, Bapteste E, Delsuc F, Philippe H (2004) The timing of eukaryotic evolution. Proc Natl Acad Sci USA 101:15386–15391

    Google Scholar 

  • Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, Smith SA, Seaver E, Rouse GW, Obst M, Edgecombe GD, Sørensen MV, Haddock SH, Schmidt-Rhaesa A, Okusu A, Kristensen RM, Wheeler WC, Martindale MQ, Giribet G (2008) Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452:745–749

    Article  CAS  PubMed  Google Scholar 

  • Eitel M, Osigus HJ, DeSalle R, Schierwater B (2013) Global diversity of the Placozoa. PLoS One 8(4):e57131

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Felsenstein J (2005) PHYLIP (Phylogeny inference package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle

    Google Scholar 

  • Fuchs J, Obst M, Sundberg P (2009) The first comprehensive molecular phylogeny of Bryozoa (Ectoprocta) based on combined analyses of nuclear and mitochondrial genes. Mol Phylogenet Evol 52:225–233

    Google Scholar 

  • Gaut BS, Lewis PO (1995) Success of maximum likelihood phylogeny inference in the four-taxon case. Mol Biol Evol 12:152–162

    Article  CAS  PubMed  Google Scholar 

  • Gauthier O, Lapointe F (2007) Hybrids and phylogenetics revisited: a statistical test of hybridization using quartets. Syst Bot 32:8–15

    Article  Google Scholar 

  • Hillis DM, Huelsenbeck JP (1992) Signal, noise, and reliability in molecular phylogenetic analyses. J Hered 83:189–195

    Google Scholar 

  • Hughes AL, Friedman R (2003) 2R or not 2R: testing hypotheses of genome duplication in early vertebrates. J Struct Funct Genomics 3:85–93

    Article  CAS  PubMed  Google Scholar 

  • Human Genome Resources 2010. http://www.ncbi.nlm.nih.gov/projects/genome/guide/human/

  • Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267

    Article  CAS  PubMed  Google Scholar 

  • Huson DH, Scornavacca C (2011) A survey of combinatorial methods for phylogenetic networks. Genome Biol Evol 3:23–35

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • JGI X. tropicalis genome assembly (2009). http://genome.jgi-psf.org/Xentr4/Xentr4.home.html

  • Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282

    CAS  PubMed  Google Scholar 

  • Lecointre G, Philippe H, Vân Lê HL, Le Guyader H (1993) Species sampling has a major impact on phylogenetic inference. Mol Phylogenet Evol 2:205–224

    Article  CAS  PubMed  Google Scholar 

  • Matus DQ, Copley RR, Dunn CW, Hejnol A, Eccleston H, Halanych KM, Martindale MQ, Telford MJ (2006) Broad taxon and gene sampling indicate that chaetognaths are protostomes. Curr Biol 8:R575–R576

    Article  Google Scholar 

  • Nosenko T, Schreiber F, Adamska M, Adamski M, Eitel M, Hammel J, Maldonado M, Müller WE, Nickel M, Schierwater B, Vacelet J, Wiens M, Wörheide G (2013) Deep metazoan phylogeny: when different genes tell different stories. Phylogenet Evol 67:223–233

    Article  Google Scholar 

  • Osigus HJ, Eitel M, Bernt M, Donath A, Schierwater B (2013) Mitogenomics at the base of Metazoa. Mol Phylogenet Evol 69:339–351

    Google Scholar 

  • Page RDM (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    CAS  PubMed  Google Scholar 

  • Peterson KJ, Cotton JA, Gehling JG, Pisani D (2008) The Ediacaran emergence of bilaterians: congruence between the genetic and the geological fossil records. Philos Trans R Soc Lond B Biol Sci 363:1435–1443

    Article  PubMed Central  PubMed  Google Scholar 

  • Philip GK, Creevey CJ, McInerney JO (2005) The Opisthokonta and the Ecdysozoa may not be clades: stronger support for the grouping of plant and animal than for animal and fungi and stronger support for the Coelomata than Ecdysozoa. Mol Biol Evol 22:1175–1184

    Article  CAS  PubMed  Google Scholar 

  • Philippe H, Derelle R, Lopez P, Pick K, Borchiellini C, Boury-Esnault N, Vacelet J, Renard E, Houliston E, Quéinnec E, Da Silva C, Wincker P, Le Guyader H, Leys S, Jackson DJ, Schreiber F, Erpenbeck D, Morgenstern B, Wörheide G, Manuel M (2009) Phylogenomics revives traditional views on deep animal relationships. Curr Biol 19:706–712

    Article  CAS  PubMed  Google Scholar 

  • Putnam NH, T Butts, Ferrier DEK, Furlong RF, Hellsten U, Kawashima T, Robinson-Rechavi M, Shoguch E, Terry A et al (2008) The amphioxus genome and the evolution of the chordate karyotype. Nature 453:1064–1071

    Google Scholar 

  • Sea Urchin Genome Sequencing Consortium, Sodergren E et al (2006) The Genome of the sea urchin Strongylocentrotus purpuratus. Science 314:941–952

    Google Scholar 

  • Shimodaira H, Hasegawa M (1999) Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 16:1114–1116

    Article  CAS  Google Scholar 

  • Srivastava, M, Begovic E, Chapman J, Putnam NH, Hellsten U, Kawashima T, Kuo A, Mitros T, Salamov A, Carpenter ML, Signorovitch AY, Moreno MA, Kamm K, Grimwood J (2008) The Trichoplax genome and the nature of placozoans. Nature 454:955–960

    Google Scholar 

  • Sullivan JC, Ryan JF, Watson JA, Webb J, Mullikin JC, Rokhsar D, Finnerty JR (2006) StellaBase: the Nematostella vectensis genomics database. Nucleic Acids Res 1:34

    Google Scholar 

  • Syvanen M (1985) Cross-species gene transfer: implications for a new theory of evolution. J Theor Biol 112:333–343

    Article  CAS  PubMed  Google Scholar 

  • Syvanen M (2002) On the occurence of horizontal gene transfer among an arbitrarily chosen group of 26 Genes. J Mol Evol 54:258–266

    Article  CAS  PubMed  Google Scholar 

  • Syvanen M (2012) Evolutionary implications of horizontal gene transfer. Ann Rev Genet 46:341–358

    Article  CAS  PubMed  Google Scholar 

  • Syvanen M, Ducore J (2010) Whole genome comparisons reveals a possible chimeric origin for a major metazoan assemblage source. J Biol Syst 18:261–275

    Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wray GA, Levinton JS, Shapiro LH (1996) Molecular evidence for deep Precambrian divergences among metazoan phyla. Science 274:568–573

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Syvanen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Syvanen, M., Ericksen, B., Linz, S., Ducore, J. (2014). Quartet Partitioning Reveals Hybrid Origins of the Vertebrate. In: Pontarotti, P. (eds) Evolutionary Biology: Genome Evolution, Speciation, Coevolution and Origin of Life. Springer, Cham. https://doi.org/10.1007/978-3-319-07623-2_9

Download citation

Publish with us

Policies and ethics