Skip to main content

Evolutionary History of Maternal Plant-Manipulation and Larval Feeding Behaviours in Attelabidae (Coleoptera; Curculionoidea) and Evolution of Plant-Basal Weevil Interaction

  • Chapter
  • First Online:
Evolutionary Biology: Genome Evolution, Speciation, Coevolution and Origin of Life

Abstract

Weevils are one of the dominant taxonomic groups in terrestrial ecosystem, diversifying to more than 60,000 described species. Although the most derived weevil group, Curculionidae, has adapted to and is utilising almost all parts of plant, basal groups show relatively limited larval feeding habits, such as pollen, seed, or fungus-infested wood feeders. Thus, it seems that ancestral larval infesting plant parts of weevils were restricted to N-rich, induced-defenseless, and temporal resources. Among the basal weevils, Attelabidae obtained such resources for their larvae by evolving unique maternal plant-manipulations: attelabid females manipulate specific young plant tissues of their host plants in a species-specific manner, e.g. cutting a shoot or a leaf, rolling a leaf, or constructing sophisticated wrapped leaf rolls, before and after oviposition presumably to secure the survivorship of eggs or larvae. Molecular phylogenetic analyses based on the nuclear 18S and 28S ribosomal DNA and the mitochondrial COI genes indicated that the maternal plant-cutting behaviour originated in a common ancestor of Attelabidae, but was subsequently lost in the several lineages. The monophyly was recovered for the subfamily Attelabinae with high support, but not for the subfamily Rhynchitinae. By employing maximum likelihood-based ancestral state reconstructions, the larval leaf-blade feeding was inferred to have evolved from the boring of cut shoots/petioles. Moreover, the maternal leaf-rolling behaviour might have originated independently in the Attelabinae, Byctiscini, and also in several Deporaini lineages. Since the sophisticated behaviour of Attelabinae, i.e. constructing wrapped leaf rolls, have originated only once and not been lost in the lineage, these complex and innovative behaviours may have contributed to the success of the lineage diversification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alonso-Zarazaga MA, Lyal CHC (1999) A world catalogue of families and genera of Curculionoidea (Insecta: Coleoptera). Entomopraxis, Barcelona

    Google Scholar 

  • Awmack CS, Leather SR (2002) Host plant quality and fecundity in herbivorous insects. Annu Rev Entomol 47:817–844

    Article  CAS  PubMed  Google Scholar 

  • Becerra JX (1994) Squirt-gun defense in Bursera and the chrysomelid counterploy. Ecology 75:1991–1996

    Article  Google Scholar 

  • Becerra JX (2003) Synchronous coadaptation in an ancient case of herbivory. Proc Natl Acad Sci USA 100:12804–12807

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Beerling DJ, Osborne CP, Chaloner WG (2001) Evolution of leaf-form in land plants linked to atmospheric CO2 decline in the late Palaeozoic era. Nature 410:352–354

    Article  CAS  PubMed  Google Scholar 

  • Connor EF, Taverner MP (1997) The evolution and adaptive significance of the leaf-mining habit. Oikos 79:6–25

    Article  Google Scholar 

  • Cook JM, Rokas A, Pagel M, Stone GN (2002) Evolutionary shift between host oak sections and host-plant organs in Andricus gallwasps. Evolution 56:1821–1830

    Article  PubMed  Google Scholar 

  • Damman H (1987) Leaf quality and enemy avoidance by the larvae of a pyralid moth. Ecology 68:88–97

    Article  Google Scholar 

  • Dussourd DE, Denno RF (1994) Host range of generalist caterpillars: trenching permits feeding on plants with secretory canals. Ecology 75:69–78

    Article  Google Scholar 

  • Fabre JH (1879–1907) Souveniers Entomologiques. 10:1823–1915

    Google Scholar 

  • Gønget H (2003) The Nemonychidae, Anthribidae and Attelabidae (Coleoptera) of Northern Europe, Fauna Entomologica Scandivavica 38. Brill, Leiden Boston

    Google Scholar 

  • Hamilton RW (1980) Notes on the biology of Eugnamptus collaris (Fabr.) (Coleoptera: Rhynchitidae), with descriptions of the larva and pupa. Coleopterists Bull 34:227–236

    Google Scholar 

  • Hamilton RW (1994) New life cycle data for two western north American weevils (Coleoptera: Rhynchitidae), with a summary of north American Rhynchitid biology. Coleopterists Bull 48:331–343

    Google Scholar 

  • Hawkins BA (1994) Pattern and process in host-parasitoid interactions. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Henson WR (1958) The effects of radiation on the habitat temperatures of some poplar-inhabiting insects. Can J Zool 36:463–478

    Article  Google Scholar 

  • Hirose Y (1968) Egg parasitism of some leaf-rolling weevils in relation to the number of eggs laid in a leaf roll, with special reference to parasitism by Poropoea morimotoi Hirose (Hymenoptera: Trichogrammatidae). Kontyu 36:377–388 (in Japanese)

    Google Scholar 

  • Holloway BA (1982) Anthribidae (Insecta: Coleoptera). Fauna of New Zealand 3:1–264

    Google Scholar 

  • Hughes J, Vogler AP (2004) The phylogeny of acorn weevils (genus Curculio) from mitochondrial and nuclear DNA sequences: the problem of incomplete data. Mol Phyl Evol 32:601–615

    Article  CAS  Google Scholar 

  • Hundsdoerfer AK, Rheinheimer J, Wink M (2009) Towards the phylogeny of the Curculionoidea (Coleoptera): reconstructions from mitochondrial and nuclear ribosomal DNA sequences. Zool Anz 248:9–31

    Article  Google Scholar 

  • Iwata K (1935) On the habits of some Rhynchitinae, Attelabinae and Apoderinae in Japan. Kontyu 9:261–278 (in Japanese)

    Google Scholar 

  • Karban R, Agrawal AA (2002) Herbivore offense. Annu Rev Ecol Syst 33:641–664

    Article  Google Scholar 

  • Karban R, Baldwin IT (1997) Induced responses to herbivory. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Kobayashi C, Kato M (2004a) To be suspended or to be cut off? Differences in the performance of two types of leaf-rolls constructed by the attelabid beetle Cycnotrachelus roelofsi. Popul Ecol 46:193–202

    Article  Google Scholar 

  • Kobayashi C, Kato M (2004b) A new species of Poropoea (Trichogrammatidae) oviposites by entering through the oviposition hole of attelabid beetle. Contr Biol Lab Kyoto Univ 29:431–436

    Google Scholar 

  • Kobayashi C, Fukasawa Y, Hirose D, Kato M (2008) Contribution of symbiotic fungi to larval nutrition of a leaf-rolling weevil. Evol Ecol 22:711–722

    Google Scholar 

  • Kobayashi C, Okuyama Y, Kawazoe K, Kato M (2012) The evolutionary history of maternal plant-manipulation and larval feeding behaviours in attelabid weevils (Coleoptera; Curculionidae). Mol Phyl Evol 64:318–330

    Article  Google Scholar 

  • Kono H (1930) Die biologischen gruppen der Rhynchitinen, Attelabinen und Apoderinen. J Fac Agr Hokkaido Univ 29:1–36

    Google Scholar 

  • Kristensen NP (1997) Early evolution of the Lepidoptera + Trichoptera lineage: phylogeny and the ecological scenario. In: Grandcolas P (ed) The origin of biodiversity in Insects: phylogenetic tests of evolutionary scenarios. Mémoires du Muséum National d’Histoire Naturelle 173, pp 253–271

    Google Scholar 

  • Kuschel G (1994) Nemonychidae of Australia, New Guinea, and New Caledonia. In: Zimmerman EC (ed) Australian weevils. Volume I—Orthoceri, Antribidae, to Attelabidae. Primitive weevils. CSIRO, Australia, pp 563–637

    Google Scholar 

  • Kuschel G (1995) A phylogenetic classification of the Curculionoidea to families and subfamilies. Mem Entomol Soc Washington 14:5–33

    Google Scholar 

  • Labandeira CC (2002) The history of associations between plants and animals. In: Herrera CM, Pellmyr O (eds) Plant-animal ineteractions: an evolutionary approach. Wiley-Blackwell, pp 26−74

    Google Scholar 

  • Lawrence JF, Newton AF Jr (1995) Families and subfamilies of Coleoptera (with selected genera, notes, references and data on family-group names). In: Pakaluk J, Slipinski SA (eds) Biology, phylogeny, and classification of coleoptera: papers celebrating the 80th birthday of Roy A. Crowson, vol. 2. Muzeum I Instytut Zoologii PAN, Warszawa, pp 779−1006

    Google Scholar 

  • Legalov AA (2007) Leaf-rolling weevils (Coleoptera: Rhynchitidae, Attelabidae) of the world fauna. Novosibirsk

    Google Scholar 

  • Marvaldi AE, Oberprieler RG, Lyal CHC, Bradbury T, Anderson RS (2006) Phylogeny of the Oxycoryninae s.l. (Coleptera Phytophaga) and evolution of plant-weevil interactions. Invertebr Syst 20:447–476

    Article  Google Scholar 

  • Marvaldi AE, Morrone JJ (2000) Phylogenetic systematics of weevils (Coleoptera: Curculionoidea): a reappraisal based on larval and adult morphology. Insect Syst Evol 31:43–58

    Article  Google Scholar 

  • Marvaldi AE, Sequera AS, O’Brien CW, Farrell BD (2002) Molecular and morphological phylogenetics of weevils (Coleoptera, Curculionoidea): Do niche shifts accompany diversification? Syst Biol 51:761–785

    Article  PubMed  Google Scholar 

  • Mattson WJ (1980) Herbivory in relation to plant nitrogen content. Ann Rev Ecol Syst 11:119–161

    Article  Google Scholar 

  • McKenna DD, Sequeira AS, Marvaldi AE, Farrell BD (2009) Temporal lags and overlap in the diversification of weevils and flowering plants. Proc Natl Acad Sci USA 106:7083–7088

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morimoto K (1962) Comparative morphorogy and phylogeny of the superfamily Curculionoidea of Japan. J Fac Agr Kyusyu Univ 11:331–373

    Google Scholar 

  • Morimoto K (1964) Characteristics and evolution of oviposition behavior of Attelabidae. Insect J 1:15–21 (in Japanese)

    Google Scholar 

  • Nanninga F (1991) Superfamily curuculionoidea. In: Csiro (eds) The insects of Australia vol 2, 2nd ed. Melbourne University Press, Australia, pp 678–683

    Google Scholar 

  • Nyman T, Widmer A, Roininen H (2000) Evolution of gall morphology and host-plant relationships in willow-feeding sawflies (Hymenoptera: Tenthredinidae). Evolution 54:526–533

    Article  CAS  PubMed  Google Scholar 

  • Oberprieler RG, Marvaldi AE, Anderson RS (2007) Weevils, weevils, weevils everywhere. Zootaxa 1668:491–520

    Google Scholar 

  • Okuyama Y, Pellmyr O, Kato M (2008) Parallel floral adaptations to pollination by fungus gnats within the genus Mitella (Saxifragaceae). Mol Phyl Evol 46:560–575

    Article  Google Scholar 

  • Pagel M (1994) Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters. Proc R Soc B 225:37–45

    Article  Google Scholar 

  • Pagel M (1999) The maximum likelihood approach to reconstructing ancestral character states of discrete characters on phylogenies. Syst Biol 48:612–622

    Article  Google Scholar 

  • Pagel M, Meade A, Barker D (2004) Bayesian estimation of ancestral character states on phylogenies. Syst Biol 53:673–684

    Article  PubMed  Google Scholar 

  • Price PW (1992) Evolution and ecology of gall-inducing sawflies. In: Shorthouse JD, Rohfritsch O (eds) Biology of insect-induced galls. Oxford University Press, Oxford, pp 208–224

    Google Scholar 

  • Riedel A (2002) Taxonomy, phylogeny, and zoogeography of the weevil genus Euops (Insecta: Coleoptera: Curculionoidea) in the Papuan region. PhD Thesis, Ludwig Maximilians University, Munich

    Google Scholar 

  • Sagers CL (1992) Manipulation of host plant quality: herbivores keep leaves in the dark. Funct Ecol 6:741–743

    Article  Google Scholar 

  • Sakurai K (1983) Ethological and ecological studies of leaf-roll weevils and other small animals. Kyoto Univ, Ethol Res of Small Animals in the Humid Tropics, pp 129–146

    Google Scholar 

  • Sakurai K (1985) An attelabid weevil (Euops splendida) cultivates fungi. J Ethol 3:151–156

    Article  Google Scholar 

  • Sandberg SL, Berenbaum MR (1989) Leaf-tying by tortricid larvae as an adaptation for feeding on phototoxic Hypericum perforatum. J Chem Ecol 15:875–885

    Article  CAS  PubMed  Google Scholar 

  • Sawada Y (1993) A systematic study of the family Rhynchitinae of Japan (Coleoptera, Curculionoidea). Hum Nat 2:1–93

    Google Scholar 

  • Sawada Y (2000) Ecological notes on Eugnamptus flavipes (Sharp, 1889) (Coleoptera: Rhynchitidae), with description of the larva. Nat Hum Activities 5:1–3

    Google Scholar 

  • Sawada Y, Morimoto K (1986) The mycetangia and the mode of the fungus transmission in the weevil genus Euops (Coleoptera: Attelabidae). Sci Bull Fac Agr Kyushu Univ 40:197–205 (In Japanese)

    Google Scholar 

  • Slansky F Jr, Rodriguez JG (1987) Nutritional ecology of insects, mites, spiders, and related invertebrates. Wiley, New York, pp 449–486

    Google Scholar 

  • Tallamy DW (1985) Squash beetle feeding behavior: an adaptation against induced cucurbit defenses. Ecology 66:1574–1579

    Article  Google Scholar 

  • Vogt GB (1992) Leaf-rolling weevils (Coleoptera: Attelabidae), their host plants, and associated rhynchitid weevils in North America (Canada through the Republic of Panama): summary of a long-term field study. In: Quintero D, Aiello A (eds) Insects of panama and mesoamerica. Oxford University Press, New York, pp 392–420

    Google Scholar 

  • Wink M, Mikes Z, Rheinheimer J (1997) Phylogenetic relationships in weevils (Coleoptera: Curculionoidea) inferred from nucleotide sequences of mitochondrial 16S rDNA. Naturwissenschaften 84:318–321

    Article  CAS  Google Scholar 

  • Zimmerman EC (1994) Australian weevils. Volume I—Orthoceri, Antribidae, to Attelabidae. Primitive weevils. CSIRO, Australia

    Google Scholar 

Download references

Acknowledgments

We wish to thank Dr. K Aoki, Dr. A Kawakita, Dr. H Nishi, Dr. R Goto and Y Kobayashi for supplying weevil samples. We also thank Dr. Y Kameda, and Dr. A Kawakita for their helpful advices regarding molecular techniques and the analysis of molecular phylogenies. We are grateful to Dr. H Kojima for identifying a curculionid weevil. We thank Dr. AA Legalov, Dr. A Riedel, Dr. Y Sawada and Dr. K Izawa for providing helpful and detailed information on weevil behaviours and lifestyles. This study was supported by JSPS Research Fellowships for Young Scientists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chisato Kobayashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kobayashi, C., Okuyama, Y., Kawazoe, K., Kawata, M., Kato, M. (2014). Evolutionary History of Maternal Plant-Manipulation and Larval Feeding Behaviours in Attelabidae (Coleoptera; Curculionoidea) and Evolution of Plant-Basal Weevil Interaction. In: Pontarotti, P. (eds) Evolutionary Biology: Genome Evolution, Speciation, Coevolution and Origin of Life. Springer, Cham. https://doi.org/10.1007/978-3-319-07623-2_11

Download citation

Publish with us

Policies and ethics