Evidence for Ancient Horizontal Gene Acquisitions in Bdelloid Rotifers of the Genus Adineta

  • Boris Hespeels
  • Jean-François Flot
  • Alessandro Derzelle
  • Karine Van DoninckEmail author


Until recently, obligate asexuality was often considered an evolutionary dead end. However, recent advances suggest that conventional sexual reproduction, defined as the alternation of meiosis and fertilization, is not the only sustainable eukaryotic lifestyle. Moreover, different modes of asexual reproduction are observed in nature, raising the question of the diverse mechanisms responsible for the long-term survival and adaptation of strict asexuals. One possible way to study the molecular-genetic consequences of the loss of meiotic recombination is to scrutinize the genomes of asexuals of ancient and more recent origins. The first genome draft of an ancient asexual species, the bdelloid rotifer Adineta vaga, was recently made available, revealing a peculiar genomic structure in which allelic regions were massively rearranged and sometimes found on the same chromosome. Such genome organization devoid of homologous chromosomes appears incompatible with meiotic pairing and segregation, and represents therefore a compelling genomic signature of asexuality. Besides, the genome of A. vaga contains around 8 % of genes of apparent nonmetazoan origin, a percentage much higher than observed in most eukaryotes. Interestingly, a similar percentage of genes of nonmetazoan origin was independently inferred from a large-scale transcriptome analysis of the bdelloid rotifer Adineta ricciae. In this chapter, we conducted a comparative study between these two closely related species using reciprocal best blast hits, followed by functional annotation using the GOANNA pipeline. Around 10 % of all the orthologs identified between the two species were putatively acquired by horizontal gene transfer and lots of them were associated to hydrolases (18 %) and oxidoreductases (16 %) functions. We hypothesize that these acquisitions may have helped bdelloids to adapt to multiple food sources and to develop enhanced resistance to desiccation. Furthermore, comparisons with sequences available for the monogonont rotifer Brachionus plicatilis suggest that some nonmetazoan genes were acquired by rotifers before the separation of bdelloids and monogononts.


Horizontal Gene Transfer Gene Conversion Genomic Plasticity Methionine Sulfoxide Reductase Bdelloid Rotifer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abad P et al (2008) Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nat Biotechnol 26(8):909–915PubMedCrossRefGoogle Scholar
  2. Altenhoff AM, Dessimoz C (2009) Phylogenetic and functional assessment of orthologs inference projects and methods. PLoS Comput Biol 5(1):e1000262PubMedCentralPubMedCrossRefGoogle Scholar
  3. Arkhipova IR, Meselson M (2005) Deleterious transposable elements and the extinction of asexuals. BioEssays 27(1):76–85PubMedCrossRefGoogle Scholar
  4. Arkhipova IR, Yushenova IA, Rodriguez F (2013) Endonuclease−containing Penelope retrotransposons in the bdelloid rotifer Adineta vaga exhibit unusual structural features and play a role in expansion of host gene families. Mob DNA 4(1):19Google Scholar
  5. Birky CW Jr, (1996). Heterozygosity, heteromorphy, and phylogenetic trees in asexual eukaryotes. Genetics 144(1):427–437Google Scholar
  6. Boschetti C et al (2012) Biochemical diversification through foreign gene expression in bdelloid rotifers PLoS Genet 8(11):e1003035Google Scholar
  7. Castagnone-Sereno P, Danchin EGJ (2014) Parasitic success without sex—the nematode experience. J Evol Biol (in press)Google Scholar
  8. Chapman JA et al (2010) The dynamic genome of Hydra. Nature 464(7288):592–596PubMedCrossRefGoogle Scholar
  9. Colbourne JK et al (2011) The ecoresponsive genome of Daphnia pulex. Science 331(6017):555–561PubMedCentralPubMedCrossRefGoogle Scholar
  10. Connallon T, Clark AG (2010) Gene duplication, gene conversion and the evolution of the Y chromosome. Genetics 186(1):277–286PubMedCentralPubMedCrossRefGoogle Scholar
  11. Crombach A, Hogeweg P (2007) Chromosome rearrangements and the evolution of genome structuring and adaptability. Mol Biol Evol 24(5):1130–1139PubMedCrossRefGoogle Scholar
  12. Danchin EGJ et al (2010) Multiple lateral gene transfers and duplications have promoted plant parasitism ability in nematodes. Proc Natl Acad Sci USA 107(41):17651–17656PubMedCentralPubMedCrossRefGoogle Scholar
  13. Danchin EGJ et al (2011) Genomic perspectives on the long-term absence of sexual reproduction in animals. In: Pontarotti P (ed) Evolutionary biology—concepts, biodiversity, macroevolution and genome evolution. Springer, Heidelberg, pp 223–242CrossRefGoogle Scholar
  14. de Jonge R et al (2013) Extensive chromosomal reshuffling drives evolution of virulence in an asexual pathogen. Genome Res 23(8):1271–1282PubMedCentralPubMedCrossRefGoogle Scholar
  15. Denekamp N et al (2009) Discovering genes associated with dormancy in the monogonont rotifer Brachionus plicatilis. BMC Genom 10(1):108CrossRefGoogle Scholar
  16. Doolittle FW (1998) You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. Trends Genet 14(8):307–311PubMedCrossRefGoogle Scholar
  17. Felsenstein J (1974) The evolutionary advantage of recombination. Genetics 78(2):737–756PubMedCentralPubMedGoogle Scholar
  18. Fitch WM (1970) Distinguishing homologous from analogous proteins. Syst Biol 19(2):99–113Google Scholar
  19. Flot, JF et al (2013). Genomic evidence for ameiotic evolution in the bdelloid rotifer Adineta vaga. Nature 500(7463):453–457Google Scholar
  20. Fontaneto D et al (2010) Cryptic diversity in the genus Adineta Hudson & Gosse, 1886 (Rotifera: Bdelloidea: Adinetidae): a DNA taxonomy approach. Hydrobiologia 662(1):27–33CrossRefGoogle Scholar
  21. Fontaneto D et al (2009) Extreme levels of hidden diversity in microscopic animals (Rotifera) revealed by DNA taxonomy. Mol Phylogenet Evol 53(1):182–189PubMedCrossRefGoogle Scholar
  22. Gladyshev EA, Arkhipova IR (2010) Genome structure of bdelloid rotifers: shaped by asexuality or desiccation? J Hered 101(Supplement 1):S85–S93CrossRefGoogle Scholar
  23. Gladyshev EA, Meselson M, Arkhipova IR (2008) Massive horizontal gene transfer in bdelloid rotifers. Science 320(5880):1210–1213 Google Scholar
  24. Gogarten JP, Doolittle WF, Lawrence JG (2002) Prokaryotic evolution in light of gene transfer. Mol Biol Evol 19(12):2226–2238PubMedCrossRefGoogle Scholar
  25. Gross SM, Williamson VM (2011) Tm1: a Mutator/Foldback transposable element family in root-knot nematodes. PLoS ONE 6(9):e24534PubMedCentralPubMedCrossRefGoogle Scholar
  26. Haegeman A, Jones JT, Danchin EGJ (2011) Horizontal gene transfer in nematodes: a catalyst for plant parasitism? Molecular Plant-Microbe Interactions 24(8):879–887PubMedCrossRefGoogle Scholar
  27. Hehemann J-H et al (2012) Bacteria of the human gut microbiome catabolize red seaweed glycans with carbohydrate-active enzyme updates from extrinsic microbes. Proc Natl Acad Sci USA 109(48):19786–19791PubMedCentralPubMedCrossRefGoogle Scholar
  28. Henry L, Schwander T, Crespi BJ (2012) Deleterious mutation accumulation in asexual Timema stick insects. Mol Biol Evol 29(1):401–408PubMedCrossRefGoogle Scholar
  29. Hespeels B et al (2014) Gateway to genetic exchange? DNA double-strand breaks in the bdelloid rotifer Adineta vaga submitted to desiccation. J Evol Biol (in press)Google Scholar
  30. Hotopp JCD et al (2007) Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science 317(5845):1753–1756CrossRefGoogle Scholar
  31. Hsu WS (1956a) Oogenesis in Habrotrocha tridens (Milne). Biol Bull 111(3):364CrossRefGoogle Scholar
  32. Hsu WS (1956b) Oogenesis in the Bdelloidea rotifer Philodina roseola Ehrenberg. La Cellule 57:283–296Google Scholar
  33. Hulsen T et al (2006) Benchmarking ortholog identification methods using functional genomics data. Genome Biol 7(4):R31PubMedCentralPubMedCrossRefGoogle Scholar
  34. Hur JH et al (2009) Degenerate tetraploidy was established before bdelloid rotifer families diverged. Mol Biol Evol 26(2):375–383PubMedCrossRefGoogle Scholar
  35. International Aphid Genomics Consortium (2010) Genome sequence of the pea aphid Acyrthosiphon pisum. PLoS Biol 8(2):e1000313CrossRefGoogle Scholar
  36. Jain R, Rivera MC, Lake JA (1999) Horizontal gene transfer among genomes: the complexity hypothesis. Proc Natl Acad Sci USA 96(7):3801–3806PubMedCentralPubMedCrossRefGoogle Scholar
  37. Judson O, Normark B (1996) Ancient asexual scandals. Trends Ecol Evol 11(2):41–46Google Scholar
  38. Khakhlova O, Bock R (2006) Elimination of deleterious mutations in plastid genomes by gene conversion. Plant J 46(1):85–94PubMedCrossRefGoogle Scholar
  39. Kikuchi T et al (2011) Genomic insights into the origin of parasitism in the emerging plant pathogen Bursaphelenchus xylophilus. PLoS Pathog 7(9):e1002219PubMedCentralPubMedCrossRefGoogle Scholar
  40. Koonin EV (2005) Orthologs, paralogs, and evolutionary genomics. Annu Rev Genet 39:309–338PubMedCrossRefGoogle Scholar
  41. Kraaijeveld K et al (2012) Transposon proliferation in an asexual parasitoid. Mol Ecol 21(16):3898–3906PubMedCrossRefGoogle Scholar
  42. Leffler EM et al (2012) Revisiting an old riddle: what determines genetic diversity levels within species? PLoS Biol 10(9):e1001388PubMedCentralPubMedCrossRefGoogle Scholar
  43. Lesbarrères D (2011) Sex or no sex, reproduction is not the question. BioEssays 33(11):818CrossRefGoogle Scholar
  44. Lipinski KJ et al (2014) High spontaneous rate of gene duplication in Caenorhabditis elegans. Curr Biol 21(4):306–310CrossRefGoogle Scholar
  45. Lodé T (2011) Sex is not a solution for reproduction: the libertine bubble theory. BioEssays 33(6):419–422CrossRefGoogle Scholar
  46. Lunt DH (2008) Genetic tests of ancient asexuality in root knot nematodes reveal recent hybrid origins. BMC Evol Biol 8:194PubMedCentralPubMedCrossRefGoogle Scholar
  47. Lynch M et al (2008) Localization of the genetic determinants of meiosis suppression in Daphnia pulex. Genetics 180(1):317–327PubMedCentralPubMedCrossRefGoogle Scholar
  48. Maynard Smith J (1986) Evolution: contemplating life without sex. Nature 324(6095):300–301CrossRefGoogle Scholar
  49. Maynard Smith J (1978) The evolution of sex. Cambridge University Press, CambridgeGoogle Scholar
  50. McCarthy FM et al (2006) AgBase: a functional genomics resource for agriculture. BMC Genom 7:229CrossRefGoogle Scholar
  51. Moran NA, Jarvik T (2010). Lateral transfer of genes from fungi underlies carotenoid production in aphids. Science 328(5978):624–627Google Scholar
  52. Moreno-Hagelsieb G, Latimer K (2008) Choosing BLAST options for better detection of orthologs as reciprocal best hits. Bioinformatics 24(3):319–324CrossRefGoogle Scholar
  53. Muller HJ (1932) Some genetic aspects of sex. Am Nat 66(703):118–138Google Scholar
  54. Ni T, Yue J, Sun G, Zou Y, Wen J, Huang J. (2012). Ancient gene transfer from algae to animals: Mechanisms and evolutionary significance. BMC Evol. Biol 12(1):83Google Scholar
  55. Nikoh N et al (2010) Bacterial genes in the aphid genome: absence of functional gene transfer from Buchnera to its host. PLoS Genet 6(2):e1000827PubMedCentralPubMedCrossRefGoogle Scholar
  56. Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405(6784):299–304PubMedCrossRefGoogle Scholar
  57. Overballe-Petersen S et al (2013) Bacterial natural transformation by highly fragmented and damaged DNA. Proc Natl Acad Sci USA 110(49):19860–19865Google Scholar
  58. Paganini J et al (2012) Contribution of lateral gene transfers to the genome composition and parasitic ability of root-knot nematodes. PLoS ONE 7(11):e50875PubMedCentralPubMedCrossRefGoogle Scholar
  59. Rödelsperger C, Sommer RJ (2011) Computational archaeology of the Pristionchus pacificus genome reveals evidence of horizontal gene transfers from insects. BMC Evol Biol 11(1):239PubMedCentralPubMedCrossRefGoogle Scholar
  60. Schwander T, Crespi BJ (2009) Multiple direct transitions from sexual reproduction to apomictic parthenogenesis in Timema stick insects. Evolution 63(1):84–103CrossRefGoogle Scholar
  61. Schwander T, Henry L, Crespi BJ (2011) Molecular evidence for ancient asexuality in Timema stick insects. Current Biol 21(13):1129–1134CrossRefGoogle Scholar
  62. Segers H et al (2007) Annotated checklist of the rotifers (Phylum Rotifera), with notes on nomenclature, taxonomy and distribution. Zootaxa 1564:1–104Google Scholar
  63. Segers H, Shiel RJ (2005) Tale of a sleeping beauty: a new and easily cultured model organism for experimental studies on bdelloid rotifers. Hydrobiologia 546(1):141–145CrossRefGoogle Scholar
  64. Seidl MF, Thomma BPHJ (2014) Sex or no sex: evolutionary adaptation occurs regardless. BioEssays 36(4):335–345PubMedCrossRefGoogle Scholar
  65. Stephens PJ et al (2011) Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144(1):27–40PubMedCentralPubMedCrossRefGoogle Scholar
  66. Suga K et al (2007) Analysis of expressed sequence tags of the cyclically parthenogenetic rotifer Brachionus plicatilis. PLoS ONE 2(8):e671PubMedCentralPubMedCrossRefGoogle Scholar
  67. Takeuchi N, Kaneko K, Koonin EV (2014) Horizontal gene transfer can rescue prokaryotes from Muller’s ratchet: benefit of DNA from dead cells and population subdivision. G3 4(2):325–339Google Scholar
  68. Tekaia F, Yeramian E (2012) SuperPartitions: detection and classification of orthologs. Gene 492(1):199–211PubMedCrossRefGoogle Scholar
  69. Triantaphyllou AC (1981) Oogenesis and the chromosomes of the parthenogenic root-knot nematode Meloidogyne incognita. J Nematol 13(2):95–104PubMedCentralPubMedGoogle Scholar
  70. Tucker AE et al (2013) Population-genomic insights into the evolutionary origin and fate of obligately asexual Daphnia pulex. Proc Natl Acad Sci USA 110(39):15740–15745PubMedCentralPubMedCrossRefGoogle Scholar
  71. Whitaker JW, McConkey GA, Westhead DR (2009) The transferome of metabolic genes explored: analysis of the horizontal transfer of enzyme encoding genes in unicellular eukaryotes. Genome Biol 10(4):R36PubMedCentralPubMedCrossRefGoogle Scholar
  72. Zhang J et al (2011) Transposable elements as catalysts for chromosome rearrangements. In Birchler JA (ed) Plant chromosome engineering. Methods in molecular biology. Humana Press, pp 315–326Google Scholar
  73. Zhu B, Lou MM, Xie GL, Zhang GQ, Zhou XP, Li B, Jin GL (2011). Horizontal gene transfer in silkworm, Bombyx mori. BMC Genom 12(1):248Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Boris Hespeels
    • 1
  • Jean-François Flot
    • 2
  • Alessandro Derzelle
    • 1
  • Karine Van Doninck
    • 1
    Email author
  1. 1.Laboratory of Evolutionary Genetics and Ecology, URBE, Department of BiologyUniversity of NamurNamurBelgium
  2. 2.Max Planck Institute for Dynamics and Self-OrganizationGöttingenGermany

Personalised recommendations