A Relational Dual Tableau Decision Procedure for Multimodal and Description Logics

  • Domenico Cantone
  • Joanna Golińska-Pilarek
  • Marianna Nicolosi-Asmundo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8480)


We present a dual tableau based decision procedure for a class of fragments of the classical relational logic of binary relations. The logics considered share a common language involving a restricted composition operator and infinitely many relational constants which may have the properties of reflexivity, transitivity, and heredity. The construction of the dual tableau is carried out by applying in a deterministic way axioms and inference rules of the system without resorting to external tools. An important feature of the dual tableau procedure is a rule to handle the relational composition operator, that permits to decompose in a single step compositional formulae and negative compositional formulae with the same left object variable.

Our relational dual tableau can be used as a decision procedure for validity verification in the multimodal logic K, the description logic \(\mathcal{ALC}\), and several non-classical logics for reasoning in various AI systems.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abraham, A.: Special issue: Hybrid approaches for approximate reasoning. J. Intell. Fuzzy Syst. 23(2,3), 41–42 (2012)MathSciNetGoogle Scholar
  2. 2.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, New York (2003)Google Scholar
  3. 3.
    Cantone, D., Nicolosi-Asmundo, M., Orlowska, E.: Dual tableau-based decision procedures for some relational logics. In: Proceedings of the 25th Italian Conference on Computational Logic. CEUR Workshop Proceedings, vol. 598, pp. 1–16 (2010)Google Scholar
  4. 4.
    Cantone, D., Nicolosi-Asmundo, M., Orlowska, E.: Dual tableau-based decision procedures for relational logics with restricted composition operator. Journal of Applied Non-Classical Logics 21(2), 177–200 (2011)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Corchado, E., Wozniak, M., Abraham, A., de Carvalho, A.C.P.L.F., Snásel, V.: Recent trends in intelligent data analysis. Neurocomputing 126, 1–2 (2014)CrossRefGoogle Scholar
  6. 6.
    Formisano, A., Nicolosi-Asmundo, M.: An efficient relational deductive system for propositional non-classical logics. Journal of Applied Non-Classical Logics 16(3,4), 367–408 (2006)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Golinska-Pilarek, J., Huuskonen, T., Muñoz-Velasco, E.: Relational dual tableau decision procedures and their applications to modal and intuitionistic logics. Ann. Pure Appl. Logic 165(2), 409–427 (2014)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Golinska-Pilarek, J., Muñoz-Velasco, E., Mora, A.: A new deduction system for deciding validity in modal logic k. Logic Journal of the IGPL 19(2), 425–434 (2011)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Medsker, L.R.: Hybrid intelligent systems. Kluwer (1995)Google Scholar
  10. 10.
    Mora, A., Muñoz-Velasco, E., Golinska-Pilarek, J.: Implementing a relational theorem prover for modal logic. Int. J. Comput. Math. 88(9), 1869–1884 (2011)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Orłowska, E., Golińska-Pilarek, J.: Dual Tableaux: Foundations, Methodology, Case Studies. Trends in Logic, vol. 36. Springer (2011)Google Scholar
  12. 12.
    Orłowska, E.: Relational interpretation of modal logics. In: Andreka, H., Monk, D., Nemeti, I. (eds.) Algebraic Logic. Colloquia Mathematica Societatis Janos Bolyai, vol. 54, pp. 443–471. North Holland (1988)Google Scholar
  13. 13.
    Sattler, U.: A concept language extended with different kinds of transitive roles. In: Görz, G., Hölldobler, S. (eds.) KI 1996. LNCS, vol. 1137, pp. 333–345. Springer, Heidelberg (1996)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Domenico Cantone
    • 1
  • Joanna Golińska-Pilarek
    • 2
  • Marianna Nicolosi-Asmundo
    • 1
  1. 1.Dept. of Mathematics and Computer ScienceUniversity of CataniaItaly
  2. 2.Institute of PhilosophyUniversity of WarsawPoland

Personalised recommendations