Advertisement

Performance Testing of Multi-Chaotic Differential Evolution Concept on Shifted Benchmark Functions

  • Roman Senkerik
  • Michal Pluhacek
  • Donald Davendra
  • Ivan Zelinka
  • Zuzana Kominkova Oplatkova
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8480)

Abstract

This research deals with the hybridization of the two softcomputing fields, which are chaos theory and evolutionary computation. This paper aims on the investigations on the multi-chaos-driven evolutionary algorithm Differential Evolution (DE) concept. This paper is aimed at the embedding and alternating of set of two discrete dissipative chaotic systems in the form of chaos pseudo random number generators for the DE. In this paper the novel initial concept of DE/rand/1/bin strategy driven alternately by two chaotic maps (systems) is introduced. From the previous research, it follows that very promising results were obtained through the utilization of different chaotic maps, which have unique properties with connection to DE. The idea is then to connect these two different influences to the performance of DE into the one multi-chaotic concept. Repeated simulations were performed on the selected set of shifted benchmark functions in higher dimensions. Finally, the obtained results are compared with canonical DE.

Keywords

Differential Evolution Deterministic chaos Dissipative systems Optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Price, K.V.: An Introduction to Differential Evolution. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 79–108. McGraw-Hill Ltd. (1999)Google Scholar
  2. 2.
    Senkerik, R., Pluhacek, M., Zelinka, I., Oplatkova, Z.K., Vala, R., Jasek, R.: Performance of Chaos Driven Differential Evolution on Shifted Benchmark Functions Set. In: Herrero, A., Baruque, B., Klett, F., Abraham, A., Snasel, V., de Carvalho, A.C.P.L.F., Bringas, P.G., Zelinka, I., Quintian, H., Corchado, E., et al. (eds.) International Joint Conference SOCO 2013-CISIS 2013-ICEUTE 20113. AISC, vol. 239, pp. 41–50. Springer, Heidelberg (2014)Google Scholar
  3. 3.
    Senkerik, R., Davendra, D., Zelinka, I., Pluhacek, M., Kominkova Oplatkova, Z.: On the Differential Evolution Drivan by Selected Discrete Chaotic Systems: Extended Study. In: 19th International Conference on Soft Computing, MENDEL 2013, pp. 137–144 (2013)Google Scholar
  4. 4.
    Aydin, I., Karakose, M., Akin, E.: Chaotic-based hybrid negative selection algorithm and its applications in fault and anomaly detection. Expert Systems with Applications 37(7), 5285–5294 (2010)CrossRefGoogle Scholar
  5. 5.
    Caponetto, R., Fortuna, L., Fazzino, S., Xibilia, M.G.: Chaotic sequences to improve the performance of evolutionary algorithms. IEEE Transactions on Evolutionary Computation 7(3), 289–304 (2003)CrossRefGoogle Scholar
  6. 6.
    Davendra, D., Zelinka, I., Senkerik, R.: Chaos driven evolutionary algorithms for the task of PID control. Computers & Mathematics with Applications 60(4), 1088–1104 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Zelinka, I.: SOMA — Self-Organizing Migrating Algorithm. In: New Optimization Techniques in Engineering, vol. 141, pp. 167–217. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Coelho, L.D., Mariani, V.C.: A novel chaotic particle swarm optimization approach using Hénon map and implicit filtering local search for economic load dispatch. Chaos, Solitons & Fractals 39(2), 510–518 (2009)CrossRefGoogle Scholar
  9. 9.
    Davendra, D., Bialic-Davendra, M., Senkerik, R.: Scheduling the Lot-Streaming Flowshop scheduling problem with setup time with the chaos-induced Enhanced Differential Evolution. In: 2013 IEEE Symposium on Differential Evolution (SDE), April 16-19, pp. 119–126 (2013)Google Scholar
  10. 10.
    Pluhacek, M., Senkerik, R., Davendra, D., Kominkova Oplatkova, Z., Zelinka, I.: On the behavior and performance of chaos driven PSO algorithm with inertia weight. Computers & Mathematics with Applications 66(2), 122–134 (2013)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Pluhacek, M., Senkerik, R., Zelinka, I., Davendra, D., Chaos, P.S.O.: algorithm driven alternately by two different chaotic maps - An initial study. In: 2013 IEEE Congress on Evolutionary Computation (CEC), June 20-23, pp. 2444–2449 (2013)Google Scholar
  12. 12.
    Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution - A Practical Approach to Global Optimization. Natural Computing Series. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  13. 13.
    ELabbasy, E., Agiza, H., EL-Metwally, H., Elsadany, A.: Bifurcation Analysis, Chaos and Control in the Burgers Mapping. International Journal of Nonlinear Science 4(3), 171–185 (2007)MathSciNetGoogle Scholar
  14. 14.
    Sprott, J.C.: Chaos and Time-Series Analysis. Oxford University Press (2003)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Roman Senkerik
    • 1
  • Michal Pluhacek
    • 1
  • Donald Davendra
    • 2
  • Ivan Zelinka
    • 2
  • Zuzana Kominkova Oplatkova
    • 1
  1. 1.Faculty of Applied InformaticsTomas Bata University in ZlinZlinCzech Republic
  2. 2.Faculty of Electrical Engineering and Computer ScienceTechnical University of OstravaOstrava-PorubaCzech Republic

Personalised recommendations