Advertisement

TSV Design Applications: TSV-Based On-Chip Spiral Inductor, TSV-Based On-Chip Wireless Communications, and TSV-Based Bandpass Filter

  • Khaled Salah
  • Yehea Ismail
  • Alaa El-Rouby
Chapter
Part of the Analog Circuits and Signal Processing book series (ACSP)

Abstract

This chapter presents a novel design and characterization of the spiral inductor based on through silicon via (TSV) technology. An equivalent lumped model is introduced where this model is based on physics and takes into consideration TSV nonlinearities and skin effect.

A highly accurate closed-form expression for the TSV-based spiral inductor equivalent inductance is presented. This closed form is the first in literature. Moreover, this form is verified against a large number of electromagnetic (EM) simulations for different setups and shows excellent agreement with < 5 % error.

Keywords

Design Applications On-chip Spiral inductor Wireless communications Bandpass filter Quality factor Self-resonance Far field Near field Coupling coefficient Localization Crosstalk Communication distance Transceiver Resonance Accumulation Depletion Inversion 

References

  1. 1.
    J. Rosenfeld, E.G. Friedman, On-chip DC–DC converters for three-dimensional ICs. 10th international symposium on quality electronic design, IEEE 2009Google Scholar
  2. 2.
    C.P. Yue, S.S. Wong, Physical modeling of spiral inductors on silicon. IEEE Trans. Electron. Devices 47, 560–568 (2000)CrossRefGoogle Scholar
  3. 3.
    M. Wang, J. Li, K. D. T. Ngo, H. Xie, A novel integrated power inductor in silicon substrate for ultra-compact power supplies. 21st IEEE Applied Power Electronics Conference, APEC 2010Google Scholar
  4. 4.
    D.W. Lee, K.P. Hwang, S.X. Wang, Design and fabrication of integrated solenoid inductors with magnetic cores. 58th Electronic Components and Technology Conference (ECTC), 2008Google Scholar
  5. 5.
    A. Zolfaghari, A. Chan, B. Razavi, Stacked inductors and transformers in CMOS technology. IEEE J. Solid-State Circuits 36(4), 620–628 (2001)Google Scholar
  6. 6.
    T.S. Horng, K.C. Peng, J.K. Jau, Y.S. Tsai, S-parameter formulation of quality factor for a spiral inductor in generalized two-port configuration. IEEE Trans. Microw. Theory Techn. 51(11), 2197–2202 (2003)CrossRefGoogle Scholar
  7. 7.
    M. Danesh, J.R. Long, Differentially driven symmetric microstrip inductors. IEEE Trans. Microw. Theory Techn. 50(1), 332–341 (2002)CrossRefGoogle Scholar
  8. 8.
    C.C. Tang, C.H. Wu, S.I. Liu, Miniature 3-D inductors in standard CMOS process. IEEE J. Solid-State Circuits 37(4), 471–480 (2002)CrossRefGoogle Scholar
  9. 9.
    S.S. Mohan, M.d.M. Hershenson, S.P. Boyd, T.H. Lee, Simple accurate expressions for planar spiral inductances. IEEE J. Solid-State Circuits 34(10), 1419–1420 (1999)CrossRefGoogle Scholar
  10. 10.
    A. Alphones, W.K. Yee, Optimization of spiral inductor on silicon. IEEE Microwave Symposium Digest, 2006Google Scholar
  11. 11.
    J.N. Burghartz, K.A. Jenkins, M. Soyuer, Multilevel spiral inductors using VLSI interconnect technology. IEEE Electron Device Lett. 17(9), 428–430 (1996)CrossRefGoogle Scholar
  12. 12.
    S. Kodali, D.J. Allstor, Asymmetric miniature 3D inductor. IEEE Circuits Systems, 2003Google Scholar
  13. 13.
    A. Sutono, A. Pham, J. Laskar, W.R. Smith, Development of three dimensional ceramic-based MCM inductors for hybrid RF microwave applications. IEEE Radio Frequency Integrated Circuits Symposium,1999Google Scholar
  14. 14.
    J.M. López, J. Samitier, C. Cané, P. Losantos, J. Bausells, Improvement of the quality factor of RF integrated inductors by layout optimization. IEEE Trans. Microw. Theory Techn. 48(1), 76–83 (2000)CrossRefGoogle Scholar
  15. 15.
    M. Ballicchia, S. Orcioni, Design and modeling of optimum quality spiral inductors with regularization and Debye approximation. IEEE Trans. Comput.-Aided Des Integr. Circuits Syst. 29(11), 1669 (2010)CrossRefGoogle Scholar
  16. 16.
    J. Chen, J.J. Liou, On-chip spiral inductors for RF applications: An overview. J. Semicond Technol. Sci. 4(3), 149–167 (2004)Google Scholar
  17. 17.
    W. Yu, J.W. Bandler, Optimization of spiral inductor on silicon using space mapping. Microwave Symposium Digest, 2006Google Scholar
  18. 18.
    D.R. Pehlke, A. Burstein, M.F. Chang, Extremely high-Q tunable inductor for Si-based RF integrated circuit applications. Electron Devices Meeting, IEDM’97Google Scholar
  19. 19.
    N. Bheema, A.N. Chandorkar, 3D inductor for RF applications. Int. J. Microw. Opt. Technol. 3(4), 179–181 (2008)Google Scholar
  20. 20.
    N.B. Rao, A.N. Chandorkar, Optically tunable spiral inductor for RF applications. The Ninth International Conference on Communications Systems, ICCS 2004Google Scholar
  21. 21.
    L.F. Tiemeijer, R.J. Havens, Y. Bouttement, H.J. Pranger, The impact of an aluminium top layer on inductors integrated in an advanced CMOS copper backend. IEEE Electron. Device Lett. 45(11), 722–724 (2004)CrossRefGoogle Scholar
  22. 22.
    T. Kuroda, Lower cost alternative to TSV using ThruChip interface (TCI) (Keynote). DATE 2011 Workshop on 3D Integration, March 2011Google Scholar
  23. 23.
    J. Xu, S. Mick, J. Wilson, L. Luo, K. Chandrasekar, E. Erickson, P.D. Franzon, AC coupled interconnect for dense 3-D ICs. IEEE Trans. Nucl. Sci. 51(5), 2156–2160 (2004)Google Scholar
  24. 24.
    E. J. Marinissen, D.Y. Lee, J.P. Hayes, C. Sellathamby, B. Moore, S. Slupsky, L. Pujol, Contactless testing: possibility or pipe-dream? EDAA, 2009Google Scholar
  25. 25.
    A. More, B. Taskin, Wireless interconnects for inter-tier communication on 3D ICs. IEEE Microwave Conference (EuMC), 2010Google Scholar
  26. 26.
    E. Culurciello, A.G. Andreou, Capacitive coupling of data and power for 3D silicon-on-insulator VLSI. IEEE International Symposium on Circuits and Systems, ISCAS 2005Google Scholar
  27. 27.
    T. Zhang, R. Micheloni, G. Zhang, Z.R. Huang, J.J. Lu, 3-D data storage, power delivery, and RF/optical transceiver case studies of 3-D integration from system design perspectives. IEEE Proc 97(1), 161–174 (2009)CrossRefGoogle Scholar
  28. 28.
    K. Kawasaki, Y. Akiyama, K. Komori, M. Uno, H. Takeuchi, T. Itagaki, Y. Hino, Y. Kawasaki, K. Ito, A. Hajimiri, A millimeter-wave intra-connect solution. IEEE J. Solid-State Circuits 45(12), 2655–2666 (2010)CrossRefGoogle Scholar
  29. 29.
    S. Hu, L. Wang, Y.Z. Xiong, J. Shi, B. Zhang, D. Zhao, T.G. Lim, X. Yuan, Millimeter-wave/THz passive components design using through silicon via (TSV) technology. Electronic Components and Technology Conference, 2010Google Scholar
  30. 30.
    M. Duplessis, O. Tesson, F. Neuilly, J.R. Tenailleau, P. Descamps, Physical implementation of 3D integrated solenoids within silicon substrate for hybrid IC applications. Proceedings of the 39th European Microwave Conference, 2009Google Scholar
  31. 31.
    B. Zhang, Y.Z. Xiong, L. Wang, S. Hu, J. Shi, Y.Q. Zhuang, L.W. Li, X. Yuan, 3D TSV transformer design for DC–DC/AC–DC converter. Electronic Components and Technology Conference, 2010Google Scholar
  32. 32.
    H. Lehpamer, RFID Design Principles. (Artech House Inc., Norwood, 2008)Google Scholar
  33. 33.
    A. More, B. Taskin, Simulation based study of on-chip antennas for a reconfigurable hybrid 3D wireless NoC. The Proceedings of the IEEE International SoC Conference (SOCC), September 2010Google Scholar
  34. 34.
    T. Kuroda, N. Miura, Perspective of low-power and high-speed wireless inter-chip communications for SiP integration. Proceedings of the 32nd European Solid-State Circuits Conference, ESSCIRC 2006Google Scholar
  35. 35.
    R.R. Harrison, Designing efficient inductive power links for implantable devices. IEEE International Symposium on Circuits and Systems, ISCAS 2007Google Scholar
  36. 36.
    S. Han, D.D. Wentzloff, Wireless power transfer using resonant inductive coupling for 3D integrated ICs. 3DIC, 2010Google Scholar
  37. 37.
    S. Han, D. D. Wentzloff, 0.61 W/mm2 resonant inductively coupled power transfer for 3D-ICs. CICC, 2012Google Scholar
  38. 38.
    B. Razavi, Design of millimeter-wave CMOS radios: A tutorial. IEEE Trans. Circuits Syst. Part I 56(1), 4–16 (2009)CrossRefMathSciNetGoogle Scholar
  39. 39.
    D.M. Pozar, Microwave Engineering. (Wiley, New York, 2005)Google Scholar
  40. 40.
    J.X. Chewn, C.Y. Cheung, Q. Xue, Integrated bandpass filter based on double-sided parallel line with an integrated conductor plane. Asian Pacific Microwave Conference, Bangkok, Thailand, December 2007Google Scholar
  41. 41.
    Jia-Sheng Hong, M.J. Lancaster, Microstrip Filters for RF/Microwave Applications. (Wiley, New York, 2001)CrossRefGoogle Scholar
  42. 42.
  43. 43.
    T. Bandyopadhyay, K. Han, D. Chung, R. Chatterjee, M. Swaminathan, R. Tummala, Rigorous electrical modeling of through silicon vias (TSVs) with MOS capacitance effects. IEEE Trans. Compon. Packag. Manuf. Technol. 1(6), 893–903 (2011)Google Scholar
  44. 44.
    A. Papanikolaou, D. Soudris, Three Dimensional System Integration: IC Stacking Process and Design. (Springer, New York, 2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Mentor GraphicsHeliopolisEgypt
  2. 2.The American University (New Cairo) and Zewail City of Science and Technology (6th of October City)New CairoEgypt

Personalised recommendations