3D/TSV-Enabling Technologies

Part of the Analog Circuits and Signal Processing book series (ACSP)


Three-dimensional (3D) integration is a promising alternative option to traditional two-dimensional (2D) planar chips. The 3D integration is mainly concerned with the communication infrastructure between different stacked dies of future multi-core system-on-chip (SoC) and network-on-chip (NoC). Among several 3D integration technologies, the through silicon via (TSV) approach is the most promising one and therefore is the focus of the majority of 3D integration R&D activities. However, there are challenges that should be overcome before the production of TSV-based 3D integrated circuits (ICs) becomes possible, e.g., electrical modeling challenges, thermal and power challenges, technological challenges, design methodology challenges, and computer-aided design (CAD) tool development challenges. The manufacturability of TSV-based 3D-ICs is an important issue for realizing real 3D-ICs designs.


TSV SoC SoP SiP Integration Wire bond Metal bump Modeling Electrical Thermal CAD tools Technological Yield Test Body contact Architectures Power delivery Clock distribution 


  1. 1.
    K. Siozios, A. Bartzas, D. Soudris, Architecture-level exploration of alternative interconnection schemes targeting 3D FPGAs: a software-supported methodology. Int. J. Reconfig. Comput. 2008, 8 (2008)Google Scholar
  2. 2.
    D.H. Kim, S. Mukhopadhyay, S.K. Lim, TSV aware interconnect length and power prediction for 3D stacked ICs, in IEEE International Interconnect Technology Conference (2009), pp. 26–28Google Scholar
  3. 3.
    K. Banerjee, S.J. Souri, P. Kapur, K.C. Saraswat, 3-d ics: a novel chip design for improving deep-submicrometer interconnect performance and systems-on-chip integration. Proc. IEEE 89(5), 602–633 (2001)CrossRefGoogle Scholar
  4. 4.
    K.P. Stuby, Hourglass-shaped conductive connection through semiconductor structures. U.S. Patent 3648131, Assignee: IBM, Filing Date: 7 Nov 1969, Issue Date: 7 March 1972Google Scholar
  5. 5.
    J.F. Li, C.W. Wu, Is 3D integration an opportunity or just a hype? in ASPDAC, 2010Google Scholar
  6. 6.
    L.P. Carloni, P. Pande, Y. Xie, Networks-on-chip in emerging interconnect paradigms: advantages and challenges, in NOCs, 2009Google Scholar
  7. 7.
    Y. Xie, J. Cong, S. Sapatnekar, Three-Dimensional Integrated Circuit Design: EDA, Design and Microarchitectures (Springer, Boston, 2010)CrossRefGoogle Scholar
  8. 8.
    V.F. Pavlidis, E.G. Friedman, Three-Dimensional Integrated Circuit Design (Elsevier, 2011)Google Scholar
  9. 9.
    A. Papanikolaou, D. Soudris, R. Radojcic, Three Dimensional System Integration (Springer, New York, 2011)CrossRefGoogle Scholar
  10. 10.
    C. Ryu, J. Kim, Electrical characterization of through silicon via (TSV) depending on structural and material parameters based on 3D full wave simulation, in Electromagnetic Electronic Materials and Packaging, 2007 Conference (May 2008), pp. 351–354Google Scholar
  11. 11.
    C. Ryu, J. Lee, H. Lee, K. Lee, T. Oh, J. Kim, High frequency electrical model of through wafer via for 3-D stacked chip packaging, in Electronics System integration Technology Conf, vol. 1 (Sept 2006), pp. 215–220Google Scholar
  12. 12.
    D.M. Jang, C. Ryu, K.Y. Lee, B.H. Cho, J. Kim, T.S. Oh, W.J. Lee, J. Yu, Development and evaluation of 3-D SiP with vertically interconnected through silicon vias (TSV), in Proc. of ECTC (2007), pp. 847–852Google Scholar
  13. 13.
    C. Ryu, J. Kim, J.S. Pak, Multi-stacked through-silicon-via effects on signal integrity and power integrity for application of 3-dimensional stacked-chip-package, in IEEE, 2009Google Scholar
  14. 14.
    S.W. Ho, S.W. Yoon, Q. Zhou, K. Pasad, V. Kripesh, J.H. Lau, High RF performance TSV silicon carrier for high frequency application, in Electronic Components and Technology Conference, 2008Google Scholar
  15. 15.
    A. Beece, K. Rose, T. Zhang, J. Qiang, Modeling and evaluation for electrical characteristics of through-strata-vias (TSVs) in three-dimensional integration, in IEEE International Conference in 3D System Integration, 2009, 3DIC 2009Google Scholar
  16. 16.
    J. Shim, E. Song, J. Pak, J. Lee, H. Lee, K. Park, J. Kim, Active circuit to through silicon via (TSV) noise coupling, in Electrical Performance of Electronic Packaging and Systems, 2009. EPEPS ‘09, IEEE 18th ConferenceGoogle Scholar
  17. 17.
    J. Kim, E. Song, J. Cho, J. Pak, J. Lee, H. Lee, K. Park, J. Kim, Through silicon via (TSV) equalizer, in Electrical Performance of Electronic Packaging and Systems, 2009. EPEPS ‘09, IEEE 18th ConferenceGoogle Scholar
  18. 18.
    M. Rousseau, O. Rozeau, G. Cibrario, G.L. Carval, M.A. Jaud, P. Leduc, A. Farcy, A. Marty, Through-silicon via based 3D IC technology: electrostatic simulations for design methodology, in IMAPS Device Packaging Conference, Phoenix, AZ, USA, 2008Google Scholar
  19. 19.
    I. Savidis, E.G. Friedman, Electrical modeling and characterization of 3-D vias, in Proceedings of IEEE International Symposium on Circuits and Systems, May 2008Google Scholar
  20. 20.
    I. Savidis, E.G. Friedman, Closed-form expressions of 3-D via resistance, inductance, and capacitance. IEEE Transac. Electr. Dev. 56(9), 1873–1881 (2009)CrossRefGoogle Scholar
  21. 21.
    R. Weerasekera, D. Pamunuwa, M. Grange, H. Tenhunen, L.-R. Zheng, Closed-form equations for through-silicon via (TSV) parasitics in 3-D integrated circuits (ICs), in Proceedings of Workshop 3-D Integration, DATE Conference, April 2009Google Scholar
  22. 22.
    E. Eid, T. Lacrevaz, S. de Rivaz, C. Bermond, B. Flchet, F. Calmon, C. Gontrand, A. Farcy, L. Cadix, P. Ancey, Predictive high frequency effects of substrate coupling in 3D integrated circuits stacking, in 3D System Integration, 2009, 3DIC 2009Google Scholar
  23. 23.
    L. Cadix, A. Farcy, C. Bermond, C. Fuchs, P. Leduc, Modelling of through silicon via RF performance and impact on signal transmission in 3D integrated circuits, in IEEE International Conference in 3D System Integration, 2009, 3DIC 2009Google Scholar
  24. 24.
    T. Bandyopadhyay, R. Chatterjee, D. Chung, M. Swaminathan, R. Tummala, Electrical modeling of through silicon and package vias, in IEEE International Conference in 3D System Integration, 2009. 3DIC 2009Google Scholar
  25. 25.
    C. Xu, H. Li, R. Suaya, Compact AC modeling and analysis of Cu, W, and CNT based through-silicon vias (TSVs) in 3-D ICs, in IEDM09-521, 2009Google Scholar
  26. 26.
    M. Stucchi, K.D. Meyer, W. Dehaene, S.G. Katti, Electrical modeling and characterization of through silicon via for three-dimensional ICs. IEEE Transac. Electr. Dev. 57(1) (2010)Google Scholar
  27. 27.
    D.E. Khali, Y.I. Ismail, M. Khellah, T. Karnik, V. De, Analytical model for the propagation delay of through silicon vias, in Proceedings of IEEE International Symposium of Quality Electronic Design (March 2008), pp. 553–556Google Scholar
  28. 28.
    I. Savidis, S. Alam, A. Jain, S. Pozder, R. Jones, R. Chatterjee, Electrical modeling and characterization of through-silicon vias (TSVs) for 3-D integrated circuits. Microelectr. J. 41(1), 9–16 (2010)CrossRefGoogle Scholar
  29. 29.
    R. Weerasekera, D. Pamunuwa, M. Grange, H. Tenhunen, L.-R. Zheng, Closed-form equations for through-silicon via (TSV) parasitics in 3-D integrated circuits, in Proceedings of Workshop 3-D Integration, DATE Conference, April 2009Google Scholar
  30. 30.
    P. Leduca, F.d. Crécya, M. Fayollea, B. Charleta, T. Enota, M. Zussya, B. Jonesb, J.C. Barbea, N. Kerneveza, S. Maitrejeana, D. Louisa, G. Passemardc, Challenges for 3D IC integration: bonding quality and thermal managementc, IEEE, 2007Google Scholar
  31. 31.
    T.Y. Chiang, S.J. Souri, C.O. Choi, K.C. Saraswat, Thermal analysis of heterogeneous 3-D ICs with various integration schemes, in Proceedings of IEEE Electron Devices Meeting (2001), pp. 681–684Google Scholar
  32. 32.
    C. Chiang, S. Sinha, The road to 3D EDA tool readiness, in Proceedings of 2009 Conference on Asia and South Pacific Design Automation (2009), pp. 429–436Google Scholar
  33. 33.
    A. Rahman, R. Reif, System-level performance evaluation of three-dimensional integrated circuits. IEEE Trans. VLSI Syst. (Special Issue on System-Level Interconnect Prediction) 8(6), 671–678 (2000)Google Scholar
  34. 34.
    Synopsys Design Compiler,
  35. 35.
    Cadence Silicon Ensemble,
  36. 36.
  37. 37.
    B. Vaidyanathan, W.-L. Hung, F. Wang, Y. Xie, V. Narayanan, M.J. Irwin, Architecting microprocessor components in 3D design space,
  38. 38.
    Synopsis PrimeTime,
  39. 39.
    T. Yan, Q. Dong, Y. Takashima, Y. Kajitani, How does partitioning matter for 3D floorplanning? in Proceedings of GLSVLSI (April 2006), pp. 73–78Google Scholar
  40. 40.
    M. Pathak, Y. Joon Lee, T. Moon, S.K. Lim, Through silicon via management during 3D physical design: when to add and how many? in IEEE International Conference on Computer-Aided Design (ICCAD), 2010Google Scholar
  41. 41.
    W. Hung, G. Link, Y. Xie, N. Vijaykrishnan, M.J. Irwin, Interconnect and thermal-aware floorplanning for 3D microprocessors, in Proceedings of ISQED (March 2006), pp. 98–104Google Scholar
  42. 42.
    Y.J. Lee, S.K. Lim, Routing optimization of multi-modal interconnects in 3D ICs, in Proceedings of the 2009 Electronic Components and Technology Conference (May 2009), pp. 32–39Google Scholar
  43. 43.
    K. Bernstein, P. Andry, J. Cann, P. Emma, D. Greenberg, W. Haensch, M. Ignatowski, S. Koester, J. Magerlein, R. Puri, A. Young, Interconnects in the third dimension: design challenges for 3D ICs, in Proceedings of 44th Annual Conference on Design Automation (2007), pp. 562–567Google Scholar
  44. 44.
    C. Ferri, S. Reda, I. Bahar, Parametric yield management for 3D ICs: models and strategies for improvement. ACM J. Emerg. Technolog. Comp. Syst. 4, 22 (2008)Google Scholar
  45. 45.
    M. Hogan, D. Petranovic, Robust verification of 3D-ICs: pros, cons and recommendations, in 3D System Integration, 2009, 3DIC 2009 (2009)Google Scholar
  46. 46.
    T. Bandyopadhyay, K. Han, D. Chung, R. Chatterjee, M. Swaminathan, R. Tummala, Rigorous electrical modeling of through silicon vias (TSVs) with MOS capacitance effects. IEEE Trans. Compon. Packag. Manuf. Technol. 1(6), 893–903 (2011)Google Scholar
  47. 47.
    ALLVIA-The First Through-Silicon Via (TSV) Foundry,
  48. 48.
    H. Yu, J. Ho, L. He, Simultaneous power and thermal integrity driven via stapling in 3D ICs, Electrical Engineering Department, UCLA, 2009Google Scholar
  49. 49.
    K.C. Chillara, J. Jang, W.P. Burleson, Robust signaling techniques for through silicon via bundles, in GLSVLSI’11, May 2011Google Scholar
  50. 50.
    P.E. Garrou, E.J. Vardaman, P.D. Franzon, Through silicon via technology: the ultimate market for 3D interconnect, Tech Search International, Jan 2008Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Mentor GraphicsHeliopolisEgypt
  2. 2.The American University (New Cairo) and Zewail City of Science and Technology (6th of October City)New CairoEgypt

Personalised recommendations