Skip to main content

Adapting Component-Based Systems at Runtime via Policies with Temporal Patterns

  • Conference paper
  • First Online:
Formal Aspects of Component Software (FACS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 8348))

Included in the following conference series:

Abstract

Dynamic reconfiguration allows adding or removing components of component-based systems without incurring any system downtime. To satisfy specific requirements, adaptation policies provide the means to dynamically reconfigure the systems in relation to (events in) their environment. This paper extends event-based adaptation policies by integrating temporal requirements into them. The challenge is to reconfigure component-based systems at runtime while considering both their functional and non-functional requirements. We illustrate our theoretical contributions with an example of an autonomous vehicle location system. An implementation using the Fractal component model constitutes a practical contribution. It enables dynamic reconfigurations guided by either enforcement or reflection adaptation policies.

This work has been partially funded by the Labex ACTION, ANR-11-LABX-01-01.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://fractal.objectweb.org/julia/index.html

  2. 2.

    http://gridcomp.ercim.org/

  3. 3.

    qMEDL is a flavor of MEDL used to express quantity of resource properties.

  4. 4.

    FTPL stands for TPL (Temporal Pattern Language) prefixed by ‘F’ to denote its relation to Fractal-like components and to first-order integrity constraints over them.

  5. 5.

    http://www.projet-cristal.net/

  6. 6.

    For any \((p,q)\in Parent\), we say that \(q\) has a sub-component \(p\), i.e., \(p\) is a child of \(q\). Shared components (sub-components of multiple enclosing composite components) can have more than one parent.

  7. 7.

    Since \({\mathbb B}_2 \subset {\mathbb B}_4\), the evaluation \([\![c \models cp ]\!]\) of the configuration proposition \(cp \in CP\) on the configuration \(c\) detailed on p. 5 is considered to be valued in \({\mathbb B}_4\).

  8. 8.

    As in [1, 2], we use a fuzzy value (e.g., in \(\{ \mathtt {low}\), \(\mathtt {medium}\), \(\mathtt {high} \}\)) to express this need.

  9. 9.

    In AdaptEnfor Algorithm, \(\equiv \) can be implemented by various (pre-)congruence relations—set equality for \(Elem\) and \(Rel\) in Definition 1, structural refinement in [19], or other relations compatible with the reconfiguration relation.

References

  1. Chauvel, F., Barais, O., Plouzeau, N., Borne, I., Jézéquel, J.: Composition et expression qualitative de politiques d’adaptation pour les composants Fractal. In: Actes des Journées nationales du GDR GPL 2009 (2009)

    Google Scholar 

  2. Dormoy, J., Kouchnarenko, O.: Event-based adaptation policies for fractal components. In: IEEE/ACS International Conference on Computer Systems and Applications 2010, AICCSA 2010, pp. 1–8. IEEE (2010)

    Google Scholar 

  3. Dormoy, J., Kouchnarenko, O., Lanoix, A.: Using temporal logic for dynamic reconfigurations of components. In: Barbosa, L.S., Lumpe, M. (eds.) FACS 2010. LNCS, vol. 6921, pp. 200–217. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  4. Gonnord, L., Babau, J.P.: Quantity of resource properties expression and runtime assurance for embedded systems. In: IEEE/ACS International Conference on Computer Systems and Applications 2009, AICCSA 2009, pp. 428–435. IEEE (2009)

    Google Scholar 

  5. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for finite-state verification. In: ICSE, pp. 411–420 (1999)

    Google Scholar 

  6. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for runtime verification. J. Log. Comput. 20, 651–674 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  7. Lanoix, A., Dormoy, J., Kouchnarenko, O.: Combining proof and model-checking to validate reconfigurable architectures. ENTCS 279, 43–57 (2011)

    Google Scholar 

  8. Baille, G., Garnier, P., Mathieu, H., Pissard-Gibollet, R.: The INRIA Rhône-Alpes CyCab. Technical Report RT-0229, INRIA (1999)

    Google Scholar 

  9. Hamilton, A.G.: Logic for Mathematicians. Cambridge University Press, Cambridge (1978)

    MATH  Google Scholar 

  10. Bauer, A., Falcone, Y.: Decentralised LTL monitoring. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 85–100. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Bacchus, F., Kabanza, F.: Planning for temporally extended goals. Ann. Math. Artif. Intell. 22, 5–27 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dormoy, J., Kouchnarenko, O., Lanoix, A.: Runtime verification of temporal patterns for dynamic reconfigurations of components. In: Arbab, F., Ölveczky, P.C. (eds.) FACS 2011. LNCS, vol. 7253, pp. 115–132. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  13. Kim, M., Lee, I., Shin, J., Sokolsky, O., et al.: Monitoring, checking, and steering of real-time systems. ENTCS 70, 95–111 (2002)

    Google Scholar 

  14. Manna, Z., Pnueli, A.: A hierarchy of temporal properties (invited paper, 1989). In: Proceedings of the 9th ACM Symposium on Principles of Distributed Computing, pp. 377–410. ACM (1990)

    Google Scholar 

  15. Chang, E., Manna, Z., Pnueli, A.: Characterization of temporal property classes. In: Kuich, W. (ed.) Automata, Languages and Programming. LNCS, vol. 623, pp. 474–486. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  16. Falcone, Y., Fernandez, J.-C., Mounier, L.: Runtime verification of safety-progress properties. In: Bensalem, S., Peled, D.A. (eds.) RV 2009. LNCS, vol. 5779, pp. 40–59. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  17. Ligatti, J., Bauer, L., Walker, D.: Run-time enforcement of nonsafety policies. ACM TISSEC 12, 19:1–19:41 (2009)

    Article  Google Scholar 

  18. Bloom, B., Istrail, S., Meyer, A.R.: Bisimulation can’t be traced. In: Ferrante, J., Mager, P. (eds.) POPL, pp. 229–239. ACM Press (1988)

    Google Scholar 

  19. Dormoy, J., Kouchnarenko, O., Lanoix, A.: When structural refinement of components keeps temporal properties over reconfigurations. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 171–186. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  20. Ligatti, J., Bauer, L., Walker, D.: Edit automata: enforcement mechanisms for run-time security policies. Int. J. Inf. Secur. 4, 2–16 (2005)

    Article  Google Scholar 

  21. Jantsch, A.: Modeling Embedded Systems and SoC’s: Concurrency and Time in Models of Computation. Morgan Kaufmann, San Francisco (2004)

    Google Scholar 

  22. Trentelman, K., Huisman, M.: Extending JML specifications with temporal logic. In: Kirchner, H., Ringeissen, Ch. (eds.) AMAST 2002. LNCS, vol. 2422, pp. 334–348. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  23. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model checking. Adv. Comput. 58, 117–148 (2003)

    Article  Google Scholar 

  24. Falcone, Y., Jaber, M., Nguyen, T.-H., Bozga, M., Bensalem, S.: Runtime verification of component-based systems. In: Barthe, G., Pardo, A., Schneider, G. (eds.) SEFM 2011. LNCS, vol. 7041, pp. 204–220. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  25. Kähkönen, K., Lampinen, J., Heljanko, K., Niemelä, I.: The LIME interface specification language and runtime monitoring tool. In: Bensalem, S., Peled, D.A. (eds.) RV 2009. LNCS, vol. 5779, pp. 93–100. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  26. Seinturier, L., Merle, P., Rouvoy, R., Romero, D., Schiavoni, V., Stefani, J.B.: A component-based middleware platform for reconfigurable service-oriented architectures. Softw. Pract. Exper. 42, 559–583 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Weber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Kouchnarenko, O., Weber, JF. (2014). Adapting Component-Based Systems at Runtime via Policies with Temporal Patterns. In: Fiadeiro, J., Liu, Z., Xue, J. (eds) Formal Aspects of Component Software. FACS 2013. Lecture Notes in Computer Science(), vol 8348. Springer, Cham. https://doi.org/10.1007/978-3-319-07602-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07602-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07601-0

  • Online ISBN: 978-3-319-07602-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics